Metamath Proof Explorer


Theorem gg-psercn2

Description: Since by pserulm the series converges uniformly, it is also continuous by ulmcn . (Contributed by Mario Carneiro, 3-Mar-2015) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-pserf.g G=xn0Anxn
gg-pserf.f F=ySj0Gyj
gg-pserf.a φA:0
gg-pserf.r R=supr|seq0+Grdom*<
gg-pserulm.h H=i0ySseq0+Gyi
gg-pserulm.m φM
gg-pserulm.l φM<R
gg-pserulm.y φSabs-10M
Assertion gg-psercn2 φF:Scn

Proof

Step Hyp Ref Expression
1 gg-pserf.g G=xn0Anxn
2 gg-pserf.f F=ySj0Gyj
3 gg-pserf.a φA:0
4 gg-pserf.r R=supr|seq0+Grdom*<
5 gg-pserulm.h H=i0ySseq0+Gyi
6 gg-pserulm.m φM
7 gg-pserulm.l φM<R
8 gg-pserulm.y φSabs-10M
9 nn0uz 0=0
10 0zd φ0
11 cnvimass abs-10Mdomabs
12 absf abs:
13 12 fdmi domabs=
14 11 13 sseqtri abs-10M
15 8 14 sstrdi φS
16 15 adantr φi0S
17 16 resmptd φi0yseq0+GyiS=ySseq0+Gyi
18 simplr φi0yk0iy
19 elfznn0 k0ik0
20 19 adantl φi0yk0ik0
21 1 pserval2 yk0Gyk=Akyk
22 18 20 21 syl2anc φi0yk0iGyk=Akyk
23 simpr φi0i0
24 23 9 eleqtrdi φi0i0
25 24 adantr φi0yi0
26 3 adantr φi0A:0
27 26 ffvelcdmda φi0k0Ak
28 27 adantlr φi0yk0Ak
29 expcl yk0yk
30 29 adantll φi0yk0yk
31 28 30 mulcld φi0yk0Akyk
32 19 31 sylan2 φi0yk0iAkyk
33 22 25 32 fsumser φi0yk=0iAkyk=seq0+Gyi
34 33 mpteq2dva φi0yk=0iAkyk=yseq0+Gyi
35 eqid TopOpenfld=TopOpenfld
36 35 cnfldtopon TopOpenfldTopOn
37 36 a1i φi0TopOpenfldTopOn
38 fzfid φi00iFin
39 36 a1i φi0k0iTopOpenfldTopOn
40 ffvelcdm A:0k0Ak
41 26 19 40 syl2an φi0k0iAk
42 39 39 41 cnmptc φi0k0iyAkTopOpenfldCnTopOpenfld
43 19 adantl φi0k0ik0
44 35 gg-expcn k0yykTopOpenfldCnTopOpenfld
45 43 44 syl φi0k0iyykTopOpenfldCnTopOpenfld
46 35 mpomulcn u,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
47 46 a1i φi0k0iu,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
48 oveq12 u=Akv=ykuv=Akyk
49 39 42 45 39 39 47 48 cnmpt12 φi0k0iyAkykTopOpenfldCnTopOpenfld
50 35 37 38 49 fsumcn φi0yk=0iAkykTopOpenfldCnTopOpenfld
51 35 cncfcn1 cn=TopOpenfldCnTopOpenfld
52 50 51 eleqtrrdi φi0yk=0iAkyk:cn
53 34 52 eqeltrrd φi0yseq0+Gyi:cn
54 rescncf Syseq0+Gyi:cnyseq0+GyiS:Scn
55 16 53 54 sylc φi0yseq0+GyiS:Scn
56 17 55 eqeltrrd φi0ySseq0+Gyi:Scn
57 56 5 fmptd φH:0Scn
58 1 2 3 4 5 6 7 8 pserulm φHuSF
59 9 10 57 58 ulmcn φF:Scn