Description: Lemma 2 for goldbachth . (Contributed by AV, 1-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | goldbachthlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtnonn | |
|
2 | 1 | nnzd | |
3 | fmtnonn | |
|
4 | 3 | nnzd | |
5 | 2 4 | anim12ci | |
6 | 5 | 3adant3 | |
7 | gcddvds | |
|
8 | 6 7 | syl | |
9 | goldbachthlem1 | |
|
10 | gcdcl | |
|
11 | 6 10 | syl | |
12 | 11 | nn0zd | |
13 | 4 | 3ad2ant2 | |
14 | 2z | |
|
15 | 14 | a1i | |
16 | 2 15 | zsubcld | |
17 | 16 | 3ad2ant1 | |
18 | dvdstr | |
|
19 | 12 13 17 18 | syl3anc | |
20 | 9 19 | mpan2d | |
21 | 2 | 3ad2ant1 | |
22 | dvds2sub | |
|
23 | 12 21 17 22 | syl3anc | |
24 | 23 | ancomsd | |
25 | 1 | nncnd | |
26 | 25 | 3ad2ant1 | |
27 | 2cnd | |
|
28 | 26 27 | nncand | |
29 | 28 | breq2d | |
30 | 2prm | |
|
31 | 1 3 | anim12ci | |
32 | 31 | 3adant3 | |
33 | gcdnncl | |
|
34 | 32 33 | syl | |
35 | dvdsprime | |
|
36 | 30 34 35 | sylancr | |
37 | 5 7 | syl | |
38 | breq1 | |
|
39 | 38 | adantl | |
40 | fmtnoodd | |
|
41 | 40 | pm2.21d | |
42 | 41 | ad2antrr | |
43 | 39 42 | sylbid | |
44 | 43 | ex | |
45 | 44 | com23 | |
46 | 45 | adantld | |
47 | 37 46 | mpd | |
48 | 47 | 3adant3 | |
49 | gcdcom | |
|
50 | 6 49 | syl | |
51 | 50 | eqeq1d | |
52 | 51 | biimpd | |
53 | 48 52 | jaod | |
54 | 36 53 | sylbid | |
55 | 29 54 | sylbid | |
56 | 24 55 | syld | |
57 | 20 56 | syland | |
58 | 8 57 | mpd | |