Metamath Proof Explorer


Theorem gsummpt2co

Description: Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018)

Ref Expression
Hypotheses gsummpt2co.b B=BaseW
gsummpt2co.z 0˙=0W
gsummpt2co.w φWCMnd
gsummpt2co.a φAFin
gsummpt2co.e φEV
gsummpt2co.1 φxACB
gsummpt2co.2 φxADE
gsummpt2co.3 F=xAD
Assertion gsummpt2co φWxAC=WyEWxF-1yC

Proof

Step Hyp Ref Expression
1 gsummpt2co.b B=BaseW
2 gsummpt2co.z 0˙=0W
3 gsummpt2co.w φWCMnd
4 gsummpt2co.a φAFin
5 gsummpt2co.e φEV
6 gsummpt2co.1 φxACB
7 gsummpt2co.2 φxADE
8 gsummpt2co.3 F=xAD
9 nfcsb1v _x2ndp/xC
10 csbeq1a x=2ndpC=2ndp/xC
11 ssidd φBB
12 elcnv pF-1zxp=zxxFz
13 vex zV
14 vex xV
15 13 14 op2ndd p=zx2ndp=x
16 15 adantr p=zxxFz2ndp=x
17 8 dmmptss domFA
18 14 13 breldm xFzxdomF
19 17 18 sselid xFzxA
20 19 adantl p=zxxFzxA
21 16 20 eqeltrd p=zxxFz2ndpA
22 21 exlimivv zxp=zxxFz2ndpA
23 12 22 sylbi pF-12ndpA
24 23 adantl φpF-12ndpA
25 8 funmpt2 FunF
26 funcnvcnv FunFFunF-1-1
27 25 26 ax-mp FunF-1-1
28 27 a1i φxAFunF-1-1
29 dfdm4 domF=ranF-1
30 8 dmeqi domF=domxAD
31 7 ralrimiva φxADE
32 dmmptg xADEdomxAD=A
33 31 32 syl φdomxAD=A
34 30 33 eqtrid φdomF=A
35 29 34 eqtr3id φranF-1=A
36 35 eleq2d φxranF-1xA
37 36 biimpar φxAxranF-1
38 relcnv RelF-1
39 fcnvgreu RelF-1FunF-1-1xranF-1∃!pF-1x=2ndp
40 38 39 mpanl1 FunF-1-1xranF-1∃!pF-1x=2ndp
41 28 37 40 syl2anc φxA∃!pF-1x=2ndp
42 9 1 2 10 3 4 11 6 24 41 gsummptf1o φWxAC=WpF-12ndp/xC
43 8 rnmptss xADEranFE
44 31 43 syl φranFE
45 dfcnv2 ranFEF-1=zEz×F-1z
46 44 45 syl φF-1=zEz×F-1z
47 46 mpteq1d φpF-12ndp/xC=pzEz×F-1z2ndp/xC
48 nfcv _z2ndp/xC
49 csbeq1 2ndp=x2ndp/xC=x/xC
50 15 49 syl p=zx2ndp/xC=x/xC
51 csbid x/xC=C
52 50 51 eqtrdi p=zx2ndp/xC=C
53 48 9 52 mpomptxf pzEz×F-1z2ndp/xC=zE,xF-1zC
54 47 53 eqtrdi φpF-12ndp/xC=zE,xF-1zC
55 54 oveq2d φWpF-12ndp/xC=WzE,xF-1zC
56 mptfi AFinxADFin
57 8 56 eqeltrid AFinFFin
58 cnvfi FFinF-1Fin
59 4 57 58 3syl φF-1Fin
60 imaexg F-1FinF-1zV
61 59 60 syl φF-1zV
62 61 adantr φzEF-1zV
63 simpll φzExF-1zφ
64 imassrn F-1zranF-1
65 64 29 sseqtrri F-1zdomF
66 65 17 sstri F-1zA
67 13 14 elimasn xF-1zzxF-1
68 67 biimpi xF-1zzxF-1
69 68 adantl φzExF-1zzxF-1
70 69 67 sylibr φzExF-1zxF-1z
71 66 70 sselid φzExF-1zxA
72 63 71 6 syl2anc φzExF-1zCB
73 72 anasss φzExF-1zCB
74 df-br zF-1xzxF-1
75 69 74 sylibr φzExF-1zzF-1x
76 75 anasss φzExF-1zzF-1x
77 76 pm2.24d φzExF-1z¬zF-1xC=0˙
78 77 imp φzExF-1z¬zF-1xC=0˙
79 78 anasss φzExF-1z¬zF-1xC=0˙
80 1 2 3 5 62 73 59 79 gsum2d2 φWzE,xF-1zC=WzEWxF-1zC
81 42 55 80 3eqtrd φWxAC=WzEWxF-1zC
82 nfcv _zWxF-1yC
83 nfcv _yWxF-1zC
84 sneq y=zy=z
85 84 imaeq2d y=zF-1y=F-1z
86 85 mpteq1d y=zxF-1yC=xF-1zC
87 86 oveq2d y=zWxF-1yC=WxF-1zC
88 82 83 87 cbvmpt yEWxF-1yC=zEWxF-1zC
89 88 oveq2i WyEWxF-1yC=WzEWxF-1zC
90 81 89 eqtr4di φWxAC=WyEWxF-1yC