Step |
Hyp |
Ref |
Expression |
1 |
|
gsummpt2co.b |
|
2 |
|
gsummpt2co.z |
|
3 |
|
gsummpt2co.w |
|
4 |
|
gsummpt2co.a |
|
5 |
|
gsummpt2co.e |
|
6 |
|
gsummpt2co.1 |
|
7 |
|
gsummpt2co.2 |
|
8 |
|
gsummpt2co.3 |
|
9 |
|
nfcsb1v |
|
10 |
|
csbeq1a |
|
11 |
|
ssidd |
|
12 |
|
elcnv |
|
13 |
|
vex |
|
14 |
|
vex |
|
15 |
13 14
|
op2ndd |
|
16 |
15
|
adantr |
|
17 |
8
|
dmmptss |
|
18 |
14 13
|
breldm |
|
19 |
17 18
|
sselid |
|
20 |
19
|
adantl |
|
21 |
16 20
|
eqeltrd |
|
22 |
21
|
exlimivv |
|
23 |
12 22
|
sylbi |
|
24 |
23
|
adantl |
|
25 |
8
|
funmpt2 |
|
26 |
|
funcnvcnv |
|
27 |
25 26
|
ax-mp |
|
28 |
27
|
a1i |
|
29 |
|
dfdm4 |
|
30 |
8
|
dmeqi |
|
31 |
7
|
ralrimiva |
|
32 |
|
dmmptg |
|
33 |
31 32
|
syl |
|
34 |
30 33
|
eqtrid |
|
35 |
29 34
|
eqtr3id |
|
36 |
35
|
eleq2d |
|
37 |
36
|
biimpar |
|
38 |
|
relcnv |
|
39 |
|
fcnvgreu |
|
40 |
38 39
|
mpanl1 |
|
41 |
28 37 40
|
syl2anc |
|
42 |
9 1 2 10 3 4 11 6 24 41
|
gsummptf1o |
|
43 |
8
|
rnmptss |
|
44 |
31 43
|
syl |
|
45 |
|
dfcnv2 |
|
46 |
44 45
|
syl |
|
47 |
46
|
mpteq1d |
|
48 |
|
nfcv |
|
49 |
|
csbeq1 |
|
50 |
15 49
|
syl |
|
51 |
|
csbid |
|
52 |
50 51
|
eqtrdi |
|
53 |
48 9 52
|
mpomptxf |
|
54 |
47 53
|
eqtrdi |
|
55 |
54
|
oveq2d |
|
56 |
|
mptfi |
|
57 |
8 56
|
eqeltrid |
|
58 |
|
cnvfi |
|
59 |
4 57 58
|
3syl |
|
60 |
|
imaexg |
|
61 |
59 60
|
syl |
|
62 |
61
|
adantr |
|
63 |
|
simpll |
|
64 |
|
imassrn |
|
65 |
64 29
|
sseqtrri |
|
66 |
65 17
|
sstri |
|
67 |
13 14
|
elimasn |
|
68 |
67
|
biimpi |
|
69 |
68
|
adantl |
|
70 |
69 67
|
sylibr |
|
71 |
66 70
|
sselid |
|
72 |
63 71 6
|
syl2anc |
|
73 |
72
|
anasss |
|
74 |
|
df-br |
|
75 |
69 74
|
sylibr |
|
76 |
75
|
anasss |
|
77 |
76
|
pm2.24d |
|
78 |
77
|
imp |
|
79 |
78
|
anasss |
|
80 |
1 2 3 5 62 73 59 79
|
gsum2d2 |
|
81 |
42 55 80
|
3eqtrd |
|
82 |
|
nfcv |
|
83 |
|
nfcv |
|
84 |
|
sneq |
|
85 |
84
|
imaeq2d |
|
86 |
85
|
mpteq1d |
|
87 |
86
|
oveq2d |
|
88 |
82 83 87
|
cbvmpt |
|
89 |
88
|
oveq2i |
|
90 |
81 89
|
eqtr4di |
|