| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erclwwlkn.w |
|
| 2 |
|
erclwwlkn.r |
|
| 3 |
1 2
|
eclclwwlkn1 |
|
| 4 |
|
rabeq |
|
| 5 |
1 4
|
mp1i |
|
| 6 |
|
prmnn |
|
| 7 |
6
|
nnnn0d |
|
| 8 |
1
|
eleq2i |
|
| 9 |
8
|
biimpi |
|
| 10 |
|
clwwlknscsh |
|
| 11 |
7 9 10
|
syl2an |
|
| 12 |
5 11
|
eqtrd |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
|
simpll |
|
| 15 |
|
elnnne0 |
|
| 16 |
|
eqeq1 |
|
| 17 |
16
|
eqcoms |
|
| 18 |
|
hasheq0 |
|
| 19 |
17 18
|
sylan9bbr |
|
| 20 |
19
|
necon3bid |
|
| 21 |
20
|
biimpcd |
|
| 22 |
15 21
|
simplbiim |
|
| 23 |
22
|
impcom |
|
| 24 |
|
simplr |
|
| 25 |
24
|
eqcomd |
|
| 26 |
14 23 25
|
3jca |
|
| 27 |
26
|
ex |
|
| 28 |
|
eqid |
|
| 29 |
28
|
clwwlknbp |
|
| 30 |
27 29
|
syl11 |
|
| 31 |
8 30
|
biimtrid |
|
| 32 |
6 31
|
syl |
|
| 33 |
32
|
imp |
|
| 34 |
|
scshwfzeqfzo |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
eqeq2d |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
eqeq2d |
|
| 39 |
38
|
cbvrexvw |
|
| 40 |
|
eqeq1 |
|
| 41 |
|
eqcom |
|
| 42 |
40 41
|
bitrdi |
|
| 43 |
42
|
rexbidv |
|
| 44 |
39 43
|
bitrid |
|
| 45 |
44
|
cbvrabv |
|
| 46 |
45
|
cshwshash |
|
| 47 |
46
|
adantr |
|
| 48 |
47
|
orcomd |
|
| 49 |
|
fveqeq2 |
|
| 50 |
|
fveqeq2 |
|
| 51 |
49 50
|
orbi12d |
|
| 52 |
51
|
adantl |
|
| 53 |
48 52
|
mpbird |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
ex |
|
| 56 |
55
|
adantr |
|
| 57 |
|
eleq1 |
|
| 58 |
|
oveq2 |
|
| 59 |
58
|
rexeqdv |
|
| 60 |
59
|
rabbidv |
|
| 61 |
60
|
eqeq2d |
|
| 62 |
|
eqeq2 |
|
| 63 |
62
|
orbi2d |
|
| 64 |
61 63
|
imbi12d |
|
| 65 |
57 64
|
imbi12d |
|
| 66 |
65
|
eqcoms |
|
| 67 |
66
|
adantl |
|
| 68 |
56 67
|
mpbird |
|
| 69 |
29 68
|
syl |
|
| 70 |
69 1
|
eleq2s |
|
| 71 |
70
|
impcom |
|
| 72 |
36 71
|
sylbid |
|
| 73 |
13 72
|
sylbid |
|
| 74 |
73
|
rexlimdva |
|
| 75 |
74
|
com12 |
|
| 76 |
3 75
|
biimtrdi |
|
| 77 |
76
|
pm2.43i |
|
| 78 |
77
|
impcom |
|