Metamath Proof Explorer


Theorem hashecclwwlkn1

Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number is 1 or equals this length. (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 1-May-2021)

Ref Expression
Hypotheses erclwwlkn.w W=NClWWalksNG
erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
Assertion hashecclwwlkn1 NUW/˙U=1U=N

Proof

Step Hyp Ref Expression
1 erclwwlkn.w W=NClWWalksNG
2 erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
3 1 2 eclclwwlkn1 UW/˙UW/˙xWU=yW|n0Ny=xcyclShiftn
4 rabeq W=NClWWalksNGyW|n0Ny=xcyclShiftn=yNClWWalksNG|n0Ny=xcyclShiftn
5 1 4 mp1i NxWyW|n0Ny=xcyclShiftn=yNClWWalksNG|n0Ny=xcyclShiftn
6 prmnn NN
7 6 nnnn0d NN0
8 1 eleq2i xWxNClWWalksNG
9 8 biimpi xWxNClWWalksNG
10 clwwlknscsh N0xNClWWalksNGyNClWWalksNG|n0Ny=xcyclShiftn=yWordVtxG|n0Ny=xcyclShiftn
11 7 9 10 syl2an NxWyNClWWalksNG|n0Ny=xcyclShiftn=yWordVtxG|n0Ny=xcyclShiftn
12 5 11 eqtrd NxWyW|n0Ny=xcyclShiftn=yWordVtxG|n0Ny=xcyclShiftn
13 12 eqeq2d NxWU=yW|n0Ny=xcyclShiftnU=yWordVtxG|n0Ny=xcyclShiftn
14 simpll xWordVtxGx=NNxWordVtxG
15 elnnne0 NN0N0
16 eqeq1 N=xN=0x=0
17 16 eqcoms x=NN=0x=0
18 hasheq0 xWordVtxGx=0x=
19 17 18 sylan9bbr xWordVtxGx=NN=0x=
20 19 necon3bid xWordVtxGx=NN0x
21 20 biimpcd N0xWordVtxGx=Nx
22 15 21 simplbiim NxWordVtxGx=Nx
23 22 impcom xWordVtxGx=NNx
24 simplr xWordVtxGx=NNx=N
25 24 eqcomd xWordVtxGx=NNN=x
26 14 23 25 3jca xWordVtxGx=NNxWordVtxGxN=x
27 26 ex xWordVtxGx=NNxWordVtxGxN=x
28 eqid VtxG=VtxG
29 28 clwwlknbp xNClWWalksNGxWordVtxGx=N
30 27 29 syl11 NxNClWWalksNGxWordVtxGxN=x
31 8 30 biimtrid NxWxWordVtxGxN=x
32 6 31 syl NxWxWordVtxGxN=x
33 32 imp NxWxWordVtxGxN=x
34 scshwfzeqfzo xWordVtxGxN=xyWordVtxG|n0Ny=xcyclShiftn=yWordVtxG|n0..^Ny=xcyclShiftn
35 33 34 syl NxWyWordVtxG|n0Ny=xcyclShiftn=yWordVtxG|n0..^Ny=xcyclShiftn
36 35 eqeq2d NxWU=yWordVtxG|n0Ny=xcyclShiftnU=yWordVtxG|n0..^Ny=xcyclShiftn
37 oveq2 n=mxcyclShiftn=xcyclShiftm
38 37 eqeq2d n=my=xcyclShiftny=xcyclShiftm
39 38 cbvrexvw n0..^xy=xcyclShiftnm0..^xy=xcyclShiftm
40 eqeq1 y=uy=xcyclShiftmu=xcyclShiftm
41 eqcom u=xcyclShiftmxcyclShiftm=u
42 40 41 bitrdi y=uy=xcyclShiftmxcyclShiftm=u
43 42 rexbidv y=um0..^xy=xcyclShiftmm0..^xxcyclShiftm=u
44 39 43 bitrid y=un0..^xy=xcyclShiftnm0..^xxcyclShiftm=u
45 44 cbvrabv yWordVtxG|n0..^xy=xcyclShiftn=uWordVtxG|m0..^xxcyclShiftm=u
46 45 cshwshash xWordVtxGxyWordVtxG|n0..^xy=xcyclShiftn=xyWordVtxG|n0..^xy=xcyclShiftn=1
47 46 adantr xWordVtxGxU=yWordVtxG|n0..^xy=xcyclShiftnyWordVtxG|n0..^xy=xcyclShiftn=xyWordVtxG|n0..^xy=xcyclShiftn=1
48 47 orcomd xWordVtxGxU=yWordVtxG|n0..^xy=xcyclShiftnyWordVtxG|n0..^xy=xcyclShiftn=1yWordVtxG|n0..^xy=xcyclShiftn=x
49 fveqeq2 U=yWordVtxG|n0..^xy=xcyclShiftnU=1yWordVtxG|n0..^xy=xcyclShiftn=1
50 fveqeq2 U=yWordVtxG|n0..^xy=xcyclShiftnU=xyWordVtxG|n0..^xy=xcyclShiftn=x
51 49 50 orbi12d U=yWordVtxG|n0..^xy=xcyclShiftnU=1U=xyWordVtxG|n0..^xy=xcyclShiftn=1yWordVtxG|n0..^xy=xcyclShiftn=x
52 51 adantl xWordVtxGxU=yWordVtxG|n0..^xy=xcyclShiftnU=1U=xyWordVtxG|n0..^xy=xcyclShiftn=1yWordVtxG|n0..^xy=xcyclShiftn=x
53 48 52 mpbird xWordVtxGxU=yWordVtxG|n0..^xy=xcyclShiftnU=1U=x
54 53 ex xWordVtxGxU=yWordVtxG|n0..^xy=xcyclShiftnU=1U=x
55 54 ex xWordVtxGxU=yWordVtxG|n0..^xy=xcyclShiftnU=1U=x
56 55 adantr xWordVtxGx=NxU=yWordVtxG|n0..^xy=xcyclShiftnU=1U=x
57 eleq1 N=xNx
58 oveq2 N=x0..^N=0..^x
59 58 rexeqdv N=xn0..^Ny=xcyclShiftnn0..^xy=xcyclShiftn
60 59 rabbidv N=xyWordVtxG|n0..^Ny=xcyclShiftn=yWordVtxG|n0..^xy=xcyclShiftn
61 60 eqeq2d N=xU=yWordVtxG|n0..^Ny=xcyclShiftnU=yWordVtxG|n0..^xy=xcyclShiftn
62 eqeq2 N=xU=NU=x
63 62 orbi2d N=xU=1U=NU=1U=x
64 61 63 imbi12d N=xU=yWordVtxG|n0..^Ny=xcyclShiftnU=1U=NU=yWordVtxG|n0..^xy=xcyclShiftnU=1U=x
65 57 64 imbi12d N=xNU=yWordVtxG|n0..^Ny=xcyclShiftnU=1U=NxU=yWordVtxG|n0..^xy=xcyclShiftnU=1U=x
66 65 eqcoms x=NNU=yWordVtxG|n0..^Ny=xcyclShiftnU=1U=NxU=yWordVtxG|n0..^xy=xcyclShiftnU=1U=x
67 66 adantl xWordVtxGx=NNU=yWordVtxG|n0..^Ny=xcyclShiftnU=1U=NxU=yWordVtxG|n0..^xy=xcyclShiftnU=1U=x
68 56 67 mpbird xWordVtxGx=NNU=yWordVtxG|n0..^Ny=xcyclShiftnU=1U=N
69 29 68 syl xNClWWalksNGNU=yWordVtxG|n0..^Ny=xcyclShiftnU=1U=N
70 69 1 eleq2s xWNU=yWordVtxG|n0..^Ny=xcyclShiftnU=1U=N
71 70 impcom NxWU=yWordVtxG|n0..^Ny=xcyclShiftnU=1U=N
72 36 71 sylbid NxWU=yWordVtxG|n0Ny=xcyclShiftnU=1U=N
73 13 72 sylbid NxWU=yW|n0Ny=xcyclShiftnU=1U=N
74 73 rexlimdva NxWU=yW|n0Ny=xcyclShiftnU=1U=N
75 74 com12 xWU=yW|n0Ny=xcyclShiftnNU=1U=N
76 3 75 syl6bi UW/˙UW/˙NU=1U=N
77 76 pm2.43i UW/˙NU=1U=N
78 77 impcom NUW/˙U=1U=N