Metamath Proof Explorer


Theorem hofcllem

Description: Lemma for hofcl . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofcl.m M=HomFC
hofcl.o O=oppCatC
hofcl.d D=SetCatU
hofcl.c φCCat
hofcl.u φUV
hofcl.h φranHom𝑓CU
hofcllem.b B=BaseC
hofcllem.h H=HomC
hofcllem.x φXB
hofcllem.y φYB
hofcllem.z φZB
hofcllem.w φWB
hofcllem.s φSB
hofcllem.t φTB
hofcllem.m φKZHX
hofcllem.n φLYHW
hofcllem.p φPSHZ
hofcllem.q φQWHT
Assertion hofcllem φKSZcompCXPXY2ndMSTQYWcompCTL=PZW2ndMSTQXHYZHWcompDSHTKXY2ndMZWL

Proof

Step Hyp Ref Expression
1 hofcl.m M=HomFC
2 hofcl.o O=oppCatC
3 hofcl.d D=SetCatU
4 hofcl.c φCCat
5 hofcl.u φUV
6 hofcl.h φranHom𝑓CU
7 hofcllem.b B=BaseC
8 hofcllem.h H=HomC
9 hofcllem.x φXB
10 hofcllem.y φYB
11 hofcllem.z φZB
12 hofcllem.w φWB
13 hofcllem.s φSB
14 hofcllem.t φTB
15 hofcllem.m φKZHX
16 hofcllem.n φLYHW
17 hofcllem.p φPSHZ
18 hofcllem.q φQWHT
19 eqid compC=compC
20 4 adantr φfXHYCCat
21 13 adantr φfXHYSB
22 11 adantr φfXHYZB
23 9 adantr φfXHYXB
24 17 adantr φfXHYPSHZ
25 15 adantr φfXHYKZHX
26 14 adantr φfXHYTB
27 10 adantr φfXHYYB
28 simpr φfXHYfXHY
29 7 8 19 4 10 12 14 16 18 catcocl φQYWcompCTLYHT
30 29 adantr φfXHYQYWcompCTLYHT
31 7 8 19 20 23 27 26 28 30 catcocl φfXHYQYWcompCTLXYcompCTfXHT
32 7 8 19 20 21 22 23 24 25 26 31 catass φfXHYQYWcompCTLXYcompCTfZXcompCTKSZcompCTP=QYWcompCTLXYcompCTfSXcompCTKSZcompCXP
33 12 adantr φfXHYWB
34 16 adantr φfXHYLYHW
35 18 adantr φfXHYQWHT
36 7 8 19 20 23 27 33 28 34 26 35 catass φfXHYQYWcompCTLXYcompCTf=QXWcompCTLXYcompCWf
37 36 oveq1d φfXHYQYWcompCTLXYcompCTfZXcompCTK=QXWcompCTLXYcompCWfZXcompCTK
38 7 8 19 20 23 27 33 28 34 catcocl φfXHYLXYcompCWfXHW
39 7 8 19 20 22 23 33 25 38 26 35 catass φfXHYQXWcompCTLXYcompCWfZXcompCTK=QZWcompCTLXYcompCWfZXcompCWK
40 37 39 eqtrd φfXHYQYWcompCTLXYcompCTfZXcompCTK=QZWcompCTLXYcompCWfZXcompCWK
41 40 oveq1d φfXHYQYWcompCTLXYcompCTfZXcompCTKSZcompCTP=QZWcompCTLXYcompCWfZXcompCWKSZcompCTP
42 32 41 eqtr3d φfXHYQYWcompCTLXYcompCTfSXcompCTKSZcompCXP=QZWcompCTLXYcompCWfZXcompCWKSZcompCTP
43 42 mpteq2dva φfXHYQYWcompCTLXYcompCTfSXcompCTKSZcompCXP=fXHYQZWcompCTLXYcompCWfZXcompCWKSZcompCTP
44 7 8 19 4 13 11 9 17 15 catcocl φKSZcompCXPSHX
45 1 4 7 8 9 10 13 14 19 44 29 hof2val φKSZcompCXPXY2ndMSTQYWcompCTL=fXHYQYWcompCTLXYcompCTfSXcompCTKSZcompCXP
46 1 4 7 8 11 12 13 14 19 17 18 hof2val φPZW2ndMSTQ=gZHWQZWcompCTgSZcompCTP
47 1 4 7 8 9 10 11 12 19 15 16 hof2val φKXY2ndMZWL=fXHYLXYcompCWfZXcompCWK
48 46 47 oveq12d φPZW2ndMSTQXHYZHWcompDSHTKXY2ndMZWL=gZHWQZWcompCTgSZcompCTPXHYZHWcompDSHTfXHYLXYcompCWfZXcompCWK
49 eqid compD=compD
50 eqid Hom𝑓C=Hom𝑓C
51 50 7 8 9 10 homfval φXHom𝑓CY=XHY
52 50 7 homffn Hom𝑓CFnB×B
53 52 a1i φHom𝑓CFnB×B
54 df-f Hom𝑓C:B×BUHom𝑓CFnB×BranHom𝑓CU
55 53 6 54 sylanbrc φHom𝑓C:B×BU
56 55 9 10 fovcdmd φXHom𝑓CYU
57 51 56 eqeltrrd φXHYU
58 50 7 8 11 12 homfval φZHom𝑓CW=ZHW
59 55 11 12 fovcdmd φZHom𝑓CWU
60 58 59 eqeltrrd φZHWU
61 50 7 8 13 14 homfval φSHom𝑓CT=SHT
62 55 13 14 fovcdmd φSHom𝑓CTU
63 61 62 eqeltrrd φSHTU
64 7 8 19 20 22 23 33 25 38 catcocl φfXHYLXYcompCWfZXcompCWKZHW
65 64 fmpttd φfXHYLXYcompCWfZXcompCWK:XHYZHW
66 4 adantr φgZHWCCat
67 13 adantr φgZHWSB
68 11 adantr φgZHWZB
69 14 adantr φgZHWTB
70 17 adantr φgZHWPSHZ
71 12 adantr φgZHWWB
72 simpr φgZHWgZHW
73 18 adantr φgZHWQWHT
74 7 8 19 66 68 71 69 72 73 catcocl φgZHWQZWcompCTgZHT
75 7 8 19 66 67 68 69 70 74 catcocl φgZHWQZWcompCTgSZcompCTPSHT
76 75 fmpttd φgZHWQZWcompCTgSZcompCTP:ZHWSHT
77 3 5 49 57 60 63 65 76 setcco φgZHWQZWcompCTgSZcompCTPXHYZHWcompDSHTfXHYLXYcompCWfZXcompCWK=gZHWQZWcompCTgSZcompCTPfXHYLXYcompCWfZXcompCWK
78 eqidd φfXHYLXYcompCWfZXcompCWK=fXHYLXYcompCWfZXcompCWK
79 eqidd φgZHWQZWcompCTgSZcompCTP=gZHWQZWcompCTgSZcompCTP
80 oveq2 g=LXYcompCWfZXcompCWKQZWcompCTg=QZWcompCTLXYcompCWfZXcompCWK
81 80 oveq1d g=LXYcompCWfZXcompCWKQZWcompCTgSZcompCTP=QZWcompCTLXYcompCWfZXcompCWKSZcompCTP
82 64 78 79 81 fmptco φgZHWQZWcompCTgSZcompCTPfXHYLXYcompCWfZXcompCWK=fXHYQZWcompCTLXYcompCWfZXcompCWKSZcompCTP
83 48 77 82 3eqtrd φPZW2ndMSTQXHYZHWcompDSHTKXY2ndMZWL=fXHYQZWcompCTLXYcompCWfZXcompCWKSZcompCTP
84 43 45 83 3eqtr4d φKSZcompCXPXY2ndMSTQYWcompCTL=PZW2ndMSTQXHYZHWcompDSHTKXY2ndMZWL