Metamath Proof Explorer


Theorem iblabsr

Description: A measurable function is integrable iff its absolute value is integrable. (See iblabs for the forward implication.) (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses iblabsr.1 φ x A B V
iblabsr.2 φ x A B MblFn
iblabsr.3 φ x A B 𝐿 1
Assertion iblabsr φ x A B 𝐿 1

Proof

Step Hyp Ref Expression
1 iblabsr.1 φ x A B V
2 iblabsr.2 φ x A B MblFn
3 iblabsr.3 φ x A B 𝐿 1
4 ifan if x A 0 B i k B i k 0 = if x A if 0 B i k B i k 0 0
5 2 1 mbfmptcl φ x A B
6 5 adantlr φ k 0 3 x A B
7 ax-icn i
8 ine0 i 0
9 elfzelz k 0 3 k
10 9 ad2antlr φ k 0 3 x A k
11 expclz i i 0 k i k
12 7 8 10 11 mp3an12i φ k 0 3 x A i k
13 expne0i i i 0 k i k 0
14 7 8 10 13 mp3an12i φ k 0 3 x A i k 0
15 6 12 14 divcld φ k 0 3 x A B i k
16 15 recld φ k 0 3 x A B i k
17 0re 0
18 ifcl B i k 0 if 0 B i k B i k 0
19 16 17 18 sylancl φ k 0 3 x A if 0 B i k B i k 0
20 19 rexrd φ k 0 3 x A if 0 B i k B i k 0 *
21 max1 0 B i k 0 if 0 B i k B i k 0
22 17 16 21 sylancr φ k 0 3 x A 0 if 0 B i k B i k 0
23 elxrge0 if 0 B i k B i k 0 0 +∞ if 0 B i k B i k 0 * 0 if 0 B i k B i k 0
24 20 22 23 sylanbrc φ k 0 3 x A if 0 B i k B i k 0 0 +∞
25 0e0iccpnf 0 0 +∞
26 25 a1i φ k 0 3 ¬ x A 0 0 +∞
27 24 26 ifclda φ k 0 3 if x A if 0 B i k B i k 0 0 0 +∞
28 4 27 eqeltrid φ k 0 3 if x A 0 B i k B i k 0 0 +∞
29 28 adantr φ k 0 3 x if x A 0 B i k B i k 0 0 +∞
30 29 fmpttd φ k 0 3 x if x A 0 B i k B i k 0 : 0 +∞
31 5 abscld φ x A B
32 5 absge0d φ x A 0 B
33 31 32 iblpos φ x A B 𝐿 1 x A B MblFn 2 x if x A B 0
34 3 33 mpbid φ x A B MblFn 2 x if x A B 0
35 34 simprd φ 2 x if x A B 0
36 35 adantr φ k 0 3 2 x if x A B 0
37 31 rexrd φ x A B *
38 elxrge0 B 0 +∞ B * 0 B
39 37 32 38 sylanbrc φ x A B 0 +∞
40 25 a1i φ ¬ x A 0 0 +∞
41 39 40 ifclda φ if x A B 0 0 +∞
42 41 adantr φ x if x A B 0 0 +∞
43 42 fmpttd φ x if x A B 0 : 0 +∞
44 43 adantr φ k 0 3 x if x A B 0 : 0 +∞
45 15 releabsd φ k 0 3 x A B i k B i k
46 6 12 14 absdivd φ k 0 3 x A B i k = B i k
47 elfznn0 k 0 3 k 0
48 47 ad2antlr φ k 0 3 x A k 0
49 absexp i k 0 i k = i k
50 7 48 49 sylancr φ k 0 3 x A i k = i k
51 absi i = 1
52 51 oveq1i i k = 1 k
53 1exp k 1 k = 1
54 10 53 syl φ k 0 3 x A 1 k = 1
55 52 54 eqtrid φ k 0 3 x A i k = 1
56 50 55 eqtrd φ k 0 3 x A i k = 1
57 56 oveq2d φ k 0 3 x A B i k = B 1
58 31 recnd φ x A B
59 58 adantlr φ k 0 3 x A B
60 59 div1d φ k 0 3 x A B 1 = B
61 46 57 60 3eqtrd φ k 0 3 x A B i k = B
62 45 61 breqtrd φ k 0 3 x A B i k B
63 6 absge0d φ k 0 3 x A 0 B
64 breq1 B i k = if 0 B i k B i k 0 B i k B if 0 B i k B i k 0 B
65 breq1 0 = if 0 B i k B i k 0 0 B if 0 B i k B i k 0 B
66 64 65 ifboth B i k B 0 B if 0 B i k B i k 0 B
67 62 63 66 syl2anc φ k 0 3 x A if 0 B i k B i k 0 B
68 iftrue x A if x A if 0 B i k B i k 0 0 = if 0 B i k B i k 0
69 68 adantl φ k 0 3 x A if x A if 0 B i k B i k 0 0 = if 0 B i k B i k 0
70 iftrue x A if x A B 0 = B
71 70 adantl φ k 0 3 x A if x A B 0 = B
72 67 69 71 3brtr4d φ k 0 3 x A if x A if 0 B i k B i k 0 0 if x A B 0
73 72 ex φ k 0 3 x A if x A if 0 B i k B i k 0 0 if x A B 0
74 0le0 0 0
75 74 a1i ¬ x A 0 0
76 iffalse ¬ x A if x A if 0 B i k B i k 0 0 = 0
77 iffalse ¬ x A if x A B 0 = 0
78 75 76 77 3brtr4d ¬ x A if x A if 0 B i k B i k 0 0 if x A B 0
79 73 78 pm2.61d1 φ k 0 3 if x A if 0 B i k B i k 0 0 if x A B 0
80 4 79 eqbrtrid φ k 0 3 if x A 0 B i k B i k 0 if x A B 0
81 80 ralrimivw φ k 0 3 x if x A 0 B i k B i k 0 if x A B 0
82 reex V
83 82 a1i φ k 0 3 V
84 37 adantlr φ k 0 3 x A B *
85 84 63 38 sylanbrc φ k 0 3 x A B 0 +∞
86 85 26 ifclda φ k 0 3 if x A B 0 0 +∞
87 86 adantr φ k 0 3 x if x A B 0 0 +∞
88 eqidd φ k 0 3 x if x A 0 B i k B i k 0 = x if x A 0 B i k B i k 0
89 eqidd φ k 0 3 x if x A B 0 = x if x A B 0
90 83 29 87 88 89 ofrfval2 φ k 0 3 x if x A 0 B i k B i k 0 f x if x A B 0 x if x A 0 B i k B i k 0 if x A B 0
91 81 90 mpbird φ k 0 3 x if x A 0 B i k B i k 0 f x if x A B 0
92 itg2le x if x A 0 B i k B i k 0 : 0 +∞ x if x A B 0 : 0 +∞ x if x A 0 B i k B i k 0 f x if x A B 0 2 x if x A 0 B i k B i k 0 2 x if x A B 0
93 30 44 91 92 syl3anc φ k 0 3 2 x if x A 0 B i k B i k 0 2 x if x A B 0
94 itg2lecl x if x A 0 B i k B i k 0 : 0 +∞ 2 x if x A B 0 2 x if x A 0 B i k B i k 0 2 x if x A B 0 2 x if x A 0 B i k B i k 0
95 30 36 93 94 syl3anc φ k 0 3 2 x if x A 0 B i k B i k 0
96 95 ralrimiva φ k 0 3 2 x if x A 0 B i k B i k 0
97 eqidd φ x if x A 0 B i k B i k 0 = x if x A 0 B i k B i k 0
98 eqidd φ x A B i k = B i k
99 97 98 1 isibl2 φ x A B 𝐿 1 x A B MblFn k 0 3 2 x if x A 0 B i k B i k 0
100 2 96 99 mpbir2and φ x A B 𝐿 1