| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccf1o.1 |  | 
						
							| 2 |  | elicc01 |  | 
						
							| 3 | 2 | simp1bi |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 | 4 | recnd |  | 
						
							| 6 |  | simpl2 |  | 
						
							| 7 | 6 | recnd |  | 
						
							| 8 | 5 7 | mulcld |  | 
						
							| 9 |  | ax-1cn |  | 
						
							| 10 |  | subcl |  | 
						
							| 11 | 9 5 10 | sylancr |  | 
						
							| 12 |  | simpl1 |  | 
						
							| 13 | 12 | recnd |  | 
						
							| 14 | 11 13 | mulcld |  | 
						
							| 15 | 8 14 | addcomd |  | 
						
							| 16 |  | lincmb01cmp |  | 
						
							| 17 | 15 16 | eqeltrd |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 |  | simpl1 |  | 
						
							| 20 |  | simpl2 |  | 
						
							| 21 |  | elicc2 |  | 
						
							| 22 | 21 | 3adant3 |  | 
						
							| 23 | 22 | biimpa |  | 
						
							| 24 | 23 | simp1d |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 25 26 | iccshftl |  | 
						
							| 28 | 19 20 24 19 27 | syl22anc |  | 
						
							| 29 | 18 28 | mpbid |  | 
						
							| 30 | 24 19 | resubcld |  | 
						
							| 31 | 30 | recnd |  | 
						
							| 32 |  | difrp |  | 
						
							| 33 | 32 | biimp3a |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 34 | rpcnd |  | 
						
							| 36 | 34 | rpne0d |  | 
						
							| 37 | 31 35 36 | divcan1d |  | 
						
							| 38 | 35 | mul02d |  | 
						
							| 39 | 19 | recnd |  | 
						
							| 40 | 39 | subidd |  | 
						
							| 41 | 38 40 | eqtr4d |  | 
						
							| 42 | 35 | mullidd |  | 
						
							| 43 | 41 42 | oveq12d |  | 
						
							| 44 | 29 37 43 | 3eltr4d |  | 
						
							| 45 |  | 0red |  | 
						
							| 46 |  | 1red |  | 
						
							| 47 | 30 34 | rerpdivcld |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 | 48 49 | iccdil |  | 
						
							| 51 | 45 46 47 34 50 | syl22anc |  | 
						
							| 52 | 44 51 | mpbird |  | 
						
							| 53 |  | eqcom |  | 
						
							| 54 | 31 | adantrl |  | 
						
							| 55 | 5 | adantrr |  | 
						
							| 56 | 35 | adantrl |  | 
						
							| 57 | 36 | adantrl |  | 
						
							| 58 | 54 55 56 57 | divmul3d |  | 
						
							| 59 | 53 58 | bitrid |  | 
						
							| 60 | 24 | adantrl |  | 
						
							| 61 | 60 | recnd |  | 
						
							| 62 | 39 | adantrl |  | 
						
							| 63 | 6 12 | resubcld |  | 
						
							| 64 | 4 63 | remulcld |  | 
						
							| 65 | 64 | adantrr |  | 
						
							| 66 | 65 | recnd |  | 
						
							| 67 | 61 62 66 | subadd2d |  | 
						
							| 68 |  | eqcom |  | 
						
							| 69 | 67 68 | bitrdi |  | 
						
							| 70 | 5 13 | mulcld |  | 
						
							| 71 | 8 70 13 | subadd23d |  | 
						
							| 72 | 5 7 13 | subdid |  | 
						
							| 73 | 72 | oveq1d |  | 
						
							| 74 |  | 1cnd |  | 
						
							| 75 | 74 5 13 | subdird |  | 
						
							| 76 | 13 | mullidd |  | 
						
							| 77 | 76 | oveq1d |  | 
						
							| 78 | 75 77 | eqtrd |  | 
						
							| 79 | 78 | oveq2d |  | 
						
							| 80 | 71 73 79 | 3eqtr4d |  | 
						
							| 81 | 80 | adantrr |  | 
						
							| 82 | 81 | eqeq2d |  | 
						
							| 83 | 59 69 82 | 3bitrd |  | 
						
							| 84 | 1 17 52 83 | f1ocnv2d |  |