Metamath Proof Explorer


Theorem iccshift

Description: A closed interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iccshift.1 φA
iccshift.2 φB
iccshift.3 φT
Assertion iccshift φA+TB+T=w|zABw=z+T

Proof

Step Hyp Ref Expression
1 iccshift.1 φA
2 iccshift.2 φB
3 iccshift.3 φT
4 eqeq1 w=xw=z+Tx=z+T
5 4 rexbidv w=xzABw=z+TzABx=z+T
6 5 elrab xw|zABw=z+TxzABx=z+T
7 simprr φxzABx=z+TzABx=z+T
8 nfv zφ
9 nfv zx
10 nfre1 zzABx=z+T
11 9 10 nfan zxzABx=z+T
12 8 11 nfan zφxzABx=z+T
13 nfv zxA+TB+T
14 simp3 φzABx=z+Tx=z+T
15 1 2 iccssred φAB
16 15 sselda φzABz
17 3 adantr φzABT
18 16 17 readdcld φzABz+T
19 1 adantr φzABA
20 simpr φzABzAB
21 2 adantr φzABB
22 elicc2 ABzABzAzzB
23 19 21 22 syl2anc φzABzABzAzzB
24 20 23 mpbid φzABzAzzB
25 24 simp2d φzABAz
26 19 16 17 25 leadd1dd φzABA+Tz+T
27 24 simp3d φzABzB
28 16 21 17 27 leadd1dd φzABz+TB+T
29 18 26 28 3jca φzABz+TA+Tz+Tz+TB+T
30 29 3adant3 φzABx=z+Tz+TA+Tz+Tz+TB+T
31 1 3 readdcld φA+T
32 31 3ad2ant1 φzABx=z+TA+T
33 2 3 readdcld φB+T
34 33 3ad2ant1 φzABx=z+TB+T
35 elicc2 A+TB+Tz+TA+TB+Tz+TA+Tz+Tz+TB+T
36 32 34 35 syl2anc φzABx=z+Tz+TA+TB+Tz+TA+Tz+Tz+TB+T
37 30 36 mpbird φzABx=z+Tz+TA+TB+T
38 14 37 eqeltrd φzABx=z+TxA+TB+T
39 38 3exp φzABx=z+TxA+TB+T
40 39 adantr φxzABx=z+TzABx=z+TxA+TB+T
41 12 13 40 rexlimd φxzABx=z+TzABx=z+TxA+TB+T
42 7 41 mpd φxzABx=z+TxA+TB+T
43 6 42 sylan2b φxw|zABw=z+TxA+TB+T
44 31 adantr φxA+TB+TA+T
45 33 adantr φxA+TB+TB+T
46 simpr φxA+TB+TxA+TB+T
47 eliccre A+TB+TxA+TB+Tx
48 44 45 46 47 syl3anc φxA+TB+Tx
49 48 recnd φxA+TB+Tx
50 1 adantr φxA+TB+TA
51 2 adantr φxA+TB+TB
52 3 adantr φxA+TB+TT
53 48 52 resubcld φxA+TB+TxT
54 1 recnd φA
55 3 recnd φT
56 54 55 pncand φA+T-T=A
57 56 eqcomd φA=A+T-T
58 57 adantr φxA+TB+TA=A+T-T
59 elicc2 A+TB+TxA+TB+TxA+TxxB+T
60 44 45 59 syl2anc φxA+TB+TxA+TB+TxA+TxxB+T
61 46 60 mpbid φxA+TB+TxA+TxxB+T
62 61 simp2d φxA+TB+TA+Tx
63 44 48 52 62 lesub1dd φxA+TB+TA+T-TxT
64 58 63 eqbrtrd φxA+TB+TAxT
65 61 simp3d φxA+TB+TxB+T
66 48 45 52 65 lesub1dd φxA+TB+TxTB+T-T
67 2 recnd φB
68 67 55 pncand φB+T-T=B
69 68 adantr φxA+TB+TB+T-T=B
70 66 69 breqtrd φxA+TB+TxTB
71 50 51 53 64 70 eliccd φxA+TB+TxTAB
72 55 adantr φxA+TB+TT
73 49 72 npcand φxA+TB+Tx-T+T=x
74 73 eqcomd φxA+TB+Tx=x-T+T
75 oveq1 z=xTz+T=x-T+T
76 75 rspceeqv xTABx=x-T+TzABx=z+T
77 71 74 76 syl2anc φxA+TB+TzABx=z+T
78 49 77 6 sylanbrc φxA+TB+Txw|zABw=z+T
79 43 78 impbida φxw|zABw=z+TxA+TB+T
80 79 eqrdv φw|zABw=z+T=A+TB+T
81 80 eqcomd φA+TB+T=w|zABw=z+T