Description: Limit at the lower bound, of a continuous function defined on a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | icocncflimc.a | |
|
icocncflimc.b | |
||
icocncflimc.altb | |
||
icocncflimc.f | |
||
Assertion | icocncflimc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icocncflimc.a | |
|
2 | icocncflimc.b | |
|
3 | icocncflimc.altb | |
|
4 | icocncflimc.f | |
|
5 | 1 | rexrd | |
6 | 1 | leidd | |
7 | 5 2 5 6 3 | elicod | |
8 | 4 7 | cnlimci | |
9 | cncfrss | |
|
10 | 4 9 | syl | |
11 | ssid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 12 13 14 | cncfcn | |
16 | 10 11 15 | sylancl | |
17 | 4 16 | eleqtrd | |
18 | 12 | cnfldtopon | |
19 | 18 | a1i | |
20 | resttopon | |
|
21 | 19 10 20 | syl2anc | |
22 | 12 | cnfldtop | |
23 | unicntop | |
|
24 | 23 | restid | |
25 | 22 24 | ax-mp | |
26 | 25 | cnfldtopon | |
27 | cncnp | |
|
28 | 21 26 27 | sylancl | |
29 | 17 28 | mpbid | |
30 | 29 | simpld | |
31 | ioossico | |
|
32 | 31 | a1i | |
33 | eqid | |
|
34 | 1 | recnd | |
35 | 23 | ntrtop | |
36 | 22 35 | ax-mp | |
37 | undif | |
|
38 | 10 37 | sylib | |
39 | 38 | eqcomd | |
40 | 39 | fveq2d | |
41 | 36 40 | eqtr3id | |
42 | 34 41 | eleqtrd | |
43 | 42 7 | elind | |
44 | 22 | a1i | |
45 | ssid | |
|
46 | 45 | a1i | |
47 | 23 13 | restntr | |
48 | 44 10 46 47 | syl3anc | |
49 | 43 48 | eleqtrrd | |
50 | 7 | snssd | |
51 | ssequn2 | |
|
52 | 50 51 | sylib | |
53 | 52 | eqcomd | |
54 | 53 | oveq2d | |
55 | 54 | fveq2d | |
56 | snunioo1 | |
|
57 | 5 2 3 56 | syl3anc | |
58 | 57 | eqcomd | |
59 | 55 58 | fveq12d | |
60 | 49 59 | eleqtrd | |
61 | 30 32 10 12 33 60 | limcres | |
62 | 8 61 | eleqtrrd | |