Description: Lemma for imasetpreimafvbij : the mapping H is a function onto the range of function F . (Contributed by AV, 22-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fundcmpsurinj.p | |
|
fundcmpsurinj.h | |
||
Assertion | imasetpreimafvbijlemfo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.p | |
|
2 | fundcmpsurinj.h | |
|
3 | 1 2 | imasetpreimafvbijlemf | |
4 | 3 | adantr | |
5 | 1 | preimafvelsetpreimafv | |
6 | 5 | 3expa | |
7 | imaeq2 | |
|
8 | 7 | unieqd | |
9 | 8 | eqeq2d | |
10 | 9 | adantl | |
11 | uniimaprimaeqfv | |
|
12 | 11 | adantlr | |
13 | 12 | eqcomd | |
14 | 6 10 13 | rspcedvd | |
15 | eqeq1 | |
|
16 | 15 | eqcoms | |
17 | 16 | rexbidv | |
18 | 14 17 | syl5ibrcom | |
19 | 18 | rexlimdva | |
20 | 8 | eqcomd | |
21 | 13 20 | sylan9eq | |
22 | 21 | ex | |
23 | 22 | reximdva | |
24 | 1 | elsetpreimafv | |
25 | fveq2 | |
|
26 | 25 | sneqd | |
27 | 26 | imaeq2d | |
28 | 27 | eqeq2d | |
29 | 28 | cbvrexvw | |
30 | 24 29 | sylibr | |
31 | 23 30 | impel | |
32 | eqeq2 | |
|
33 | 32 | rexbidv | |
34 | 31 33 | syl5ibrcom | |
35 | 34 | rexlimdva | |
36 | 19 35 | impbid | |
37 | 36 | abbidv | |
38 | fnfun | |
|
39 | fndm | |
|
40 | eqimss2 | |
|
41 | 39 40 | syl | |
42 | 38 41 | jca | |
43 | 42 | adantr | |
44 | dfimafn | |
|
45 | 43 44 | syl | |
46 | 2 | rnmpt | |
47 | 46 | a1i | |
48 | 37 45 47 | 3eqtr4rd | |
49 | dffo2 | |
|
50 | 4 48 49 | sylanbrc | |