Metamath Proof Explorer


Theorem imasring

Description: The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses imasring.u φU=F𝑠R
imasring.v φV=BaseR
imasring.p +˙=+R
imasring.t ·˙=R
imasring.o 1˙=1R
imasring.f φF:VontoB
imasring.e1 φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
imasring.e2 φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
imasring.r φRRing
Assertion imasring φURingF1˙=1U

Proof

Step Hyp Ref Expression
1 imasring.u φU=F𝑠R
2 imasring.v φV=BaseR
3 imasring.p +˙=+R
4 imasring.t ·˙=R
5 imasring.o 1˙=1R
6 imasring.f φF:VontoB
7 imasring.e1 φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
8 imasring.e2 φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
9 imasring.r φRRing
10 1 2 6 9 imasbas φB=BaseU
11 eqidd φ+U=+U
12 eqidd φU=U
13 3 a1i φ+˙=+R
14 ringgrp RRingRGrp
15 9 14 syl φRGrp
16 eqid 0R=0R
17 1 2 13 6 7 15 16 imasgrp φUGrpF0R=0U
18 17 simpld φUGrp
19 eqid U=U
20 9 adantr φuVvVRRing
21 simprl φuVvVuV
22 2 adantr φuVvVV=BaseR
23 21 22 eleqtrd φuVvVuBaseR
24 simprr φuVvVvV
25 24 22 eleqtrd φuVvVvBaseR
26 eqid BaseR=BaseR
27 26 4 ringcl RRinguBaseRvBaseRu·˙vBaseR
28 20 23 25 27 syl3anc φuVvVu·˙vBaseR
29 28 22 eleqtrrd φuVvVu·˙vV
30 29 caovclg φpVqVp·˙qV
31 6 8 1 2 9 4 19 30 imasmulf φU:B×BB
32 fovcdm U:B×BBuBvBuUvB
33 31 32 syl3an1 φuBvBuUvB
34 forn F:VontoBranF=B
35 6 34 syl φranF=B
36 35 eleq2d φuranFuB
37 35 eleq2d φvranFvB
38 35 eleq2d φwranFwB
39 36 37 38 3anbi123d φuranFvranFwranFuBvBwB
40 fofn F:VontoBFFnV
41 6 40 syl φFFnV
42 fvelrnb FFnVuranFxVFx=u
43 fvelrnb FFnVvranFyVFy=v
44 fvelrnb FFnVwranFzVFz=w
45 42 43 44 3anbi123d FFnVuranFvranFwranFxVFx=uyVFy=vzVFz=w
46 41 45 syl φuranFvranFwranFxVFx=uyVFy=vzVFz=w
47 39 46 bitr3d φuBvBwBxVFx=uyVFy=vzVFz=w
48 3reeanv xVyVzVFx=uFy=vFz=wxVFx=uyVFy=vzVFz=w
49 47 48 bitr4di φuBvBwBxVyVzVFx=uFy=vFz=w
50 9 adantr φxVyVzVRRing
51 simp2 φxVyVxV
52 2 3ad2ant1 φxVyVV=BaseR
53 51 52 eleqtrd φxVyVxBaseR
54 53 3adant3r3 φxVyVzVxBaseR
55 simp3 φxVyVyV
56 55 52 eleqtrd φxVyVyBaseR
57 56 3adant3r3 φxVyVzVyBaseR
58 simpr3 φxVyVzVzV
59 2 adantr φxVyVzVV=BaseR
60 58 59 eleqtrd φxVyVzVzBaseR
61 26 4 ringass RRingxBaseRyBaseRzBaseRx·˙y·˙z=x·˙y·˙z
62 50 54 57 60 61 syl13anc φxVyVzVx·˙y·˙z=x·˙y·˙z
63 62 fveq2d φxVyVzVFx·˙y·˙z=Fx·˙y·˙z
64 simpl φxVyVzVφ
65 29 caovclg φxVyVx·˙yV
66 65 3adantr3 φxVyVzVx·˙yV
67 6 8 1 2 9 4 19 imasmulval φx·˙yVzVFx·˙yUFz=Fx·˙y·˙z
68 64 66 58 67 syl3anc φxVyVzVFx·˙yUFz=Fx·˙y·˙z
69 simpr1 φxVyVzVxV
70 29 caovclg φyVzVy·˙zV
71 70 3adantr1 φxVyVzVy·˙zV
72 6 8 1 2 9 4 19 imasmulval φxVy·˙zVFxUFy·˙z=Fx·˙y·˙z
73 64 69 71 72 syl3anc φxVyVzVFxUFy·˙z=Fx·˙y·˙z
74 63 68 73 3eqtr4d φxVyVzVFx·˙yUFz=FxUFy·˙z
75 6 8 1 2 9 4 19 imasmulval φxVyVFxUFy=Fx·˙y
76 75 3adant3r3 φxVyVzVFxUFy=Fx·˙y
77 76 oveq1d φxVyVzVFxUFyUFz=Fx·˙yUFz
78 6 8 1 2 9 4 19 imasmulval φyVzVFyUFz=Fy·˙z
79 78 3adant3r1 φxVyVzVFyUFz=Fy·˙z
80 79 oveq2d φxVyVzVFxUFyUFz=FxUFy·˙z
81 74 77 80 3eqtr4d φxVyVzVFxUFyUFz=FxUFyUFz
82 simp1 Fx=uFy=vFz=wFx=u
83 simp2 Fx=uFy=vFz=wFy=v
84 82 83 oveq12d Fx=uFy=vFz=wFxUFy=uUv
85 simp3 Fx=uFy=vFz=wFz=w
86 84 85 oveq12d Fx=uFy=vFz=wFxUFyUFz=uUvUw
87 83 85 oveq12d Fx=uFy=vFz=wFyUFz=vUw
88 82 87 oveq12d Fx=uFy=vFz=wFxUFyUFz=uUvUw
89 86 88 eqeq12d Fx=uFy=vFz=wFxUFyUFz=FxUFyUFzuUvUw=uUvUw
90 81 89 syl5ibcom φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
91 90 3exp2 φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
92 91 imp32 φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
93 92 rexlimdv φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
94 93 rexlimdvva φxVyVzVFx=uFy=vFz=wuUvUw=uUvUw
95 49 94 sylbid φuBvBwBuUvUw=uUvUw
96 95 imp φuBvBwBuUvUw=uUvUw
97 26 3 4 ringdi RRingxBaseRyBaseRzBaseRx·˙y+˙z=x·˙y+˙x·˙z
98 50 54 57 60 97 syl13anc φxVyVzVx·˙y+˙z=x·˙y+˙x·˙z
99 98 fveq2d φxVyVzVFx·˙y+˙z=Fx·˙y+˙x·˙z
100 26 3 ringacl RRinguBaseRvBaseRu+˙vBaseR
101 20 23 25 100 syl3anc φuVvVu+˙vBaseR
102 101 22 eleqtrrd φuVvVu+˙vV
103 102 caovclg φyVzVy+˙zV
104 103 3adantr1 φxVyVzVy+˙zV
105 6 8 1 2 9 4 19 imasmulval φxVy+˙zVFxUFy+˙z=Fx·˙y+˙z
106 64 69 104 105 syl3anc φxVyVzVFxUFy+˙z=Fx·˙y+˙z
107 29 caovclg φxVzVx·˙zV
108 107 3adantr2 φxVyVzVx·˙zV
109 eqid +U=+U
110 6 7 1 2 9 3 109 imasaddval φx·˙yVx·˙zVFx·˙y+UFx·˙z=Fx·˙y+˙x·˙z
111 64 66 108 110 syl3anc φxVyVzVFx·˙y+UFx·˙z=Fx·˙y+˙x·˙z
112 99 106 111 3eqtr4d φxVyVzVFxUFy+˙z=Fx·˙y+UFx·˙z
113 6 7 1 2 9 3 109 imasaddval φyVzVFy+UFz=Fy+˙z
114 113 3adant3r1 φxVyVzVFy+UFz=Fy+˙z
115 114 oveq2d φxVyVzVFxUFy+UFz=FxUFy+˙z
116 6 8 1 2 9 4 19 imasmulval φxVzVFxUFz=Fx·˙z
117 116 3adant3r2 φxVyVzVFxUFz=Fx·˙z
118 76 117 oveq12d φxVyVzVFxUFy+UFxUFz=Fx·˙y+UFx·˙z
119 112 115 118 3eqtr4d φxVyVzVFxUFy+UFz=FxUFy+UFxUFz
120 83 85 oveq12d Fx=uFy=vFz=wFy+UFz=v+Uw
121 82 120 oveq12d Fx=uFy=vFz=wFxUFy+UFz=uUv+Uw
122 82 85 oveq12d Fx=uFy=vFz=wFxUFz=uUw
123 84 122 oveq12d Fx=uFy=vFz=wFxUFy+UFxUFz=uUv+UuUw
124 121 123 eqeq12d Fx=uFy=vFz=wFxUFy+UFz=FxUFy+UFxUFzuUv+Uw=uUv+UuUw
125 119 124 syl5ibcom φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
126 125 3exp2 φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
127 126 imp32 φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
128 127 rexlimdv φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
129 128 rexlimdvva φxVyVzVFx=uFy=vFz=wuUv+Uw=uUv+UuUw
130 49 129 sylbid φuBvBwBuUv+Uw=uUv+UuUw
131 130 imp φuBvBwBuUv+Uw=uUv+UuUw
132 26 3 4 ringdir RRingxBaseRyBaseRzBaseRx+˙y·˙z=x·˙z+˙y·˙z
133 50 54 57 60 132 syl13anc φxVyVzVx+˙y·˙z=x·˙z+˙y·˙z
134 133 fveq2d φxVyVzVFx+˙y·˙z=Fx·˙z+˙y·˙z
135 102 caovclg φxVyVx+˙yV
136 135 3adantr3 φxVyVzVx+˙yV
137 6 8 1 2 9 4 19 imasmulval φx+˙yVzVFx+˙yUFz=Fx+˙y·˙z
138 64 136 58 137 syl3anc φxVyVzVFx+˙yUFz=Fx+˙y·˙z
139 6 7 1 2 9 3 109 imasaddval φx·˙zVy·˙zVFx·˙z+UFy·˙z=Fx·˙z+˙y·˙z
140 64 108 71 139 syl3anc φxVyVzVFx·˙z+UFy·˙z=Fx·˙z+˙y·˙z
141 134 138 140 3eqtr4d φxVyVzVFx+˙yUFz=Fx·˙z+UFy·˙z
142 6 7 1 2 9 3 109 imasaddval φxVyVFx+UFy=Fx+˙y
143 142 3adant3r3 φxVyVzVFx+UFy=Fx+˙y
144 143 oveq1d φxVyVzVFx+UFyUFz=Fx+˙yUFz
145 117 79 oveq12d φxVyVzVFxUFz+UFyUFz=Fx·˙z+UFy·˙z
146 141 144 145 3eqtr4d φxVyVzVFx+UFyUFz=FxUFz+UFyUFz
147 82 83 oveq12d Fx=uFy=vFz=wFx+UFy=u+Uv
148 147 85 oveq12d Fx=uFy=vFz=wFx+UFyUFz=u+UvUw
149 122 87 oveq12d Fx=uFy=vFz=wFxUFz+UFyUFz=uUw+UvUw
150 148 149 eqeq12d Fx=uFy=vFz=wFx+UFyUFz=FxUFz+UFyUFzu+UvUw=uUw+UvUw
151 146 150 syl5ibcom φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
152 151 3exp2 φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
153 152 imp32 φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
154 153 rexlimdv φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
155 154 rexlimdvva φxVyVzVFx=uFy=vFz=wu+UvUw=uUw+UvUw
156 49 155 sylbid φuBvBwBu+UvUw=uUw+UvUw
157 156 imp φuBvBwBu+UvUw=uUw+UvUw
158 fof F:VontoBF:VB
159 6 158 syl φF:VB
160 26 5 ringidcl RRing1˙BaseR
161 9 160 syl φ1˙BaseR
162 161 2 eleqtrrd φ1˙V
163 159 162 ffvelcdmd φF1˙B
164 41 42 syl φuranFxVFx=u
165 36 164 bitr3d φuBxVFx=u
166 simpl φxVφ
167 162 adantr φxV1˙V
168 simpr φxVxV
169 6 8 1 2 9 4 19 imasmulval φ1˙VxVF1˙UFx=F1˙·˙x
170 166 167 168 169 syl3anc φxVF1˙UFx=F1˙·˙x
171 2 eleq2d φxVxBaseR
172 171 biimpa φxVxBaseR
173 26 4 5 ringlidm RRingxBaseR1˙·˙x=x
174 9 172 173 syl2an2r φxV1˙·˙x=x
175 174 fveq2d φxVF1˙·˙x=Fx
176 170 175 eqtrd φxVF1˙UFx=Fx
177 oveq2 Fx=uF1˙UFx=F1˙Uu
178 id Fx=uFx=u
179 177 178 eqeq12d Fx=uF1˙UFx=FxF1˙Uu=u
180 176 179 syl5ibcom φxVFx=uF1˙Uu=u
181 180 rexlimdva φxVFx=uF1˙Uu=u
182 165 181 sylbid φuBF1˙Uu=u
183 182 imp φuBF1˙Uu=u
184 6 8 1 2 9 4 19 imasmulval φxV1˙VFxUF1˙=Fx·˙1˙
185 167 184 mpd3an3 φxVFxUF1˙=Fx·˙1˙
186 26 4 5 ringridm RRingxBaseRx·˙1˙=x
187 9 172 186 syl2an2r φxVx·˙1˙=x
188 187 fveq2d φxVFx·˙1˙=Fx
189 185 188 eqtrd φxVFxUF1˙=Fx
190 oveq1 Fx=uFxUF1˙=uUF1˙
191 190 178 eqeq12d Fx=uFxUF1˙=FxuUF1˙=u
192 189 191 syl5ibcom φxVFx=uuUF1˙=u
193 192 rexlimdva φxVFx=uuUF1˙=u
194 165 193 sylbid φuBuUF1˙=u
195 194 imp φuBuUF1˙=u
196 10 11 12 18 33 96 131 157 163 183 195 isringd φURing
197 163 10 eleqtrd φF1˙BaseU
198 10 eleq2d φuBuBaseU
199 182 194 jcad φuBF1˙Uu=uuUF1˙=u
200 198 199 sylbird φuBaseUF1˙Uu=uuUF1˙=u
201 200 ralrimiv φuBaseUF1˙Uu=uuUF1˙=u
202 eqid BaseU=BaseU
203 eqid 1U=1U
204 202 19 203 isringid URingF1˙BaseUuBaseUF1˙Uu=uuUF1˙=u1U=F1˙
205 196 204 syl φF1˙BaseUuBaseUF1˙Uu=uuUF1˙=u1U=F1˙
206 197 201 205 mpbi2and φ1U=F1˙
207 206 eqcomd φF1˙=1U
208 196 207 jca φURingF1˙=1U