Metamath Proof Explorer


Theorem imsmetlem

Description: Lemma for imsmet . (Contributed by NM, 29-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses imsmetlem.1 X=BaseSetU
imsmetlem.2 G=+vU
imsmetlem.7 M=invG
imsmetlem.4 S=𝑠OLDU
imsmetlem.5 Z=0vecU
imsmetlem.6 N=normCVU
imsmetlem.8 D=IndMetU
imsmetlem.9 UNrmCVec
Assertion imsmetlem DMetX

Proof

Step Hyp Ref Expression
1 imsmetlem.1 X=BaseSetU
2 imsmetlem.2 G=+vU
3 imsmetlem.7 M=invG
4 imsmetlem.4 S=𝑠OLDU
5 imsmetlem.5 Z=0vecU
6 imsmetlem.6 N=normCVU
7 imsmetlem.8 D=IndMetU
8 imsmetlem.9 UNrmCVec
9 1 fvexi XV
10 1 7 imsdf UNrmCVecD:X×X
11 8 10 ax-mp D:X×X
12 1 2 4 6 7 imsdval2 UNrmCVecxXyXxDy=NxG-1Sy
13 8 12 mp3an1 xXyXxDy=NxG-1Sy
14 13 eqeq1d xXyXxDy=0NxG-1Sy=0
15 neg1cn 1
16 1 4 nvscl UNrmCVec1yX-1SyX
17 8 15 16 mp3an12 yX-1SyX
18 1 2 nvgcl UNrmCVecxX-1SyXxG-1SyX
19 8 18 mp3an1 xX-1SyXxG-1SyX
20 17 19 sylan2 xXyXxG-1SyX
21 1 5 6 nvz UNrmCVecxG-1SyXNxG-1Sy=0xG-1Sy=Z
22 8 20 21 sylancr xXyXNxG-1Sy=0xG-1Sy=Z
23 1 5 nvzcl UNrmCVecZX
24 8 23 ax-mp ZX
25 1 2 nvrcan UNrmCVecxG-1SyXZXyXxG-1SyGy=ZGyxG-1Sy=Z
26 8 25 mpan xG-1SyXZXyXxG-1SyGy=ZGyxG-1Sy=Z
27 24 26 mp3an2 xG-1SyXyXxG-1SyGy=ZGyxG-1Sy=Z
28 20 27 sylancom xXyXxG-1SyGy=ZGyxG-1Sy=Z
29 simpl xXyXxX
30 17 adantl xXyX-1SyX
31 simpr xXyXyX
32 1 2 nvass UNrmCVecxX-1SyXyXxG-1SyGy=xG-1SyGy
33 8 32 mpan xX-1SyXyXxG-1SyGy=xG-1SyGy
34 29 30 31 33 syl3anc xXyXxG-1SyGy=xG-1SyGy
35 1 2 4 5 nvlinv UNrmCVecyX-1SyGy=Z
36 8 35 mpan yX-1SyGy=Z
37 36 adantl xXyX-1SyGy=Z
38 37 oveq2d xXyXxG-1SyGy=xGZ
39 1 2 5 nv0rid UNrmCVecxXxGZ=x
40 8 39 mpan xXxGZ=x
41 40 adantr xXyXxGZ=x
42 34 38 41 3eqtrd xXyXxG-1SyGy=x
43 1 2 5 nv0lid UNrmCVecyXZGy=y
44 8 43 mpan yXZGy=y
45 44 adantl xXyXZGy=y
46 42 45 eqeq12d xXyXxG-1SyGy=ZGyx=y
47 28 46 bitr3d xXyXxG-1Sy=Zx=y
48 14 22 47 3bitrd xXyXxDy=0x=y
49 simpr zXxXxX
50 1 4 nvscl UNrmCVec1zX-1SzX
51 8 15 50 mp3an12 zX-1SzX
52 51 adantr zXxX-1SzX
53 1 2 nvgcl UNrmCVecxX-1SzXxG-1SzX
54 8 53 mp3an1 xX-1SzXxG-1SzX
55 49 52 54 syl2anc zXxXxG-1SzX
56 55 3adant3 zXxXyXxG-1SzX
57 1 2 nvgcl UNrmCVeczX-1SyXzG-1SyX
58 8 57 mp3an1 zX-1SyXzG-1SyX
59 17 58 sylan2 zXyXzG-1SyX
60 59 3adant2 zXxXyXzG-1SyX
61 1 2 6 nvtri UNrmCVecxG-1SzXzG-1SyXNxG-1SzGzG-1SyNxG-1Sz+NzG-1Sy
62 8 61 mp3an1 xG-1SzXzG-1SyXNxG-1SzGzG-1SyNxG-1Sz+NzG-1Sy
63 56 60 62 syl2anc zXxXyXNxG-1SzGzG-1SyNxG-1Sz+NzG-1Sy
64 13 3adant1 zXxXyXxDy=NxG-1Sy
65 simp1 zXxXyXzX
66 17 3ad2ant3 zXxXyX-1SyX
67 1 2 nvass UNrmCVecxG-1SzXzX-1SyXxG-1SzGzG-1Sy=xG-1SzGzG-1Sy
68 8 67 mpan xG-1SzXzX-1SyXxG-1SzGzG-1Sy=xG-1SzGzG-1Sy
69 56 65 66 68 syl3anc zXxXyXxG-1SzGzG-1Sy=xG-1SzGzG-1Sy
70 simpl zXxXzX
71 1 2 nvass UNrmCVecxX-1SzXzXxG-1SzGz=xG-1SzGz
72 8 71 mpan xX-1SzXzXxG-1SzGz=xG-1SzGz
73 49 52 70 72 syl3anc zXxXxG-1SzGz=xG-1SzGz
74 1 2 4 5 nvlinv UNrmCVeczX-1SzGz=Z
75 8 74 mpan zX-1SzGz=Z
76 75 adantr zXxX-1SzGz=Z
77 76 oveq2d zXxXxG-1SzGz=xGZ
78 40 adantl zXxXxGZ=x
79 73 77 78 3eqtrd zXxXxG-1SzGz=x
80 79 3adant3 zXxXyXxG-1SzGz=x
81 80 oveq1d zXxXyXxG-1SzGzG-1Sy=xG-1Sy
82 69 81 eqtr3d zXxXyXxG-1SzGzG-1Sy=xG-1Sy
83 82 fveq2d zXxXyXNxG-1SzGzG-1Sy=NxG-1Sy
84 64 83 eqtr4d zXxXyXxDy=NxG-1SzGzG-1Sy
85 1 2 4 6 7 imsdval2 UNrmCVeczXxXzDx=NzG-1Sx
86 8 85 mp3an1 zXxXzDx=NzG-1Sx
87 1 2 4 6 nvdif UNrmCVeczXxXNzG-1Sx=NxG-1Sz
88 8 87 mp3an1 zXxXNzG-1Sx=NxG-1Sz
89 86 88 eqtrd zXxXzDx=NxG-1Sz
90 89 3adant3 zXxXyXzDx=NxG-1Sz
91 1 2 4 6 7 imsdval2 UNrmCVeczXyXzDy=NzG-1Sy
92 8 91 mp3an1 zXyXzDy=NzG-1Sy
93 92 3adant2 zXxXyXzDy=NzG-1Sy
94 90 93 oveq12d zXxXyXzDx+zDy=NxG-1Sz+NzG-1Sy
95 63 84 94 3brtr4d zXxXyXxDyzDx+zDy
96 95 3coml xXyXzXxDyzDx+zDy
97 9 11 48 96 ismeti DMetX