Metamath Proof Explorer


Theorem ioccncflimc

Description: Limit at the upper bound of a continuous function defined on a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ioccncflimc.a φA*
ioccncflimc.b φB
ioccncflimc.altb φA<B
ioccncflimc.f φF:ABcn
Assertion ioccncflimc φFBFABlimB

Proof

Step Hyp Ref Expression
1 ioccncflimc.a φA*
2 ioccncflimc.b φB
3 ioccncflimc.altb φA<B
4 ioccncflimc.f φF:ABcn
5 2 rexrd φB*
6 2 leidd φBB
7 1 5 5 3 6 eliocd φBAB
8 4 7 cnlimci φFBFlimB
9 cncfrss F:ABcnAB
10 4 9 syl φAB
11 ssid
12 eqid TopOpenfld=TopOpenfld
13 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
14 eqid TopOpenfld𝑡=TopOpenfld𝑡
15 12 13 14 cncfcn ABABcn=TopOpenfld𝑡ABCnTopOpenfld𝑡
16 10 11 15 sylancl φABcn=TopOpenfld𝑡ABCnTopOpenfld𝑡
17 4 16 eleqtrd φFTopOpenfld𝑡ABCnTopOpenfld𝑡
18 12 cnfldtopon TopOpenfldTopOn
19 resttopon TopOpenfldTopOnABTopOpenfld𝑡ABTopOnAB
20 18 10 19 sylancr φTopOpenfld𝑡ABTopOnAB
21 12 cnfldtop TopOpenfldTop
22 unicntop =TopOpenfld
23 22 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
24 21 23 ax-mp TopOpenfld𝑡=TopOpenfld
25 24 cnfldtopon TopOpenfld𝑡TopOn
26 cncnp TopOpenfld𝑡ABTopOnABTopOpenfld𝑡TopOnFTopOpenfld𝑡ABCnTopOpenfld𝑡F:ABxABFTopOpenfld𝑡ABCnPTopOpenfld𝑡x
27 20 25 26 sylancl φFTopOpenfld𝑡ABCnTopOpenfld𝑡F:ABxABFTopOpenfld𝑡ABCnPTopOpenfld𝑡x
28 17 27 mpbid φF:ABxABFTopOpenfld𝑡ABCnPTopOpenfld𝑡x
29 28 simpld φF:AB
30 ioossioc ABAB
31 30 a1i φABAB
32 eqid TopOpenfld𝑡ABB=TopOpenfld𝑡ABB
33 2 recnd φB
34 22 ntrtop TopOpenfldTopintTopOpenfld=
35 21 34 ax-mp intTopOpenfld=
36 undif ABABAB=
37 10 36 sylib φABAB=
38 37 eqcomd φ=ABAB
39 38 fveq2d φintTopOpenfld=intTopOpenfldABAB
40 35 39 eqtr3id φ=intTopOpenfldABAB
41 33 40 eleqtrd φBintTopOpenfldABAB
42 41 7 elind φBintTopOpenfldABABAB
43 21 a1i φTopOpenfldTop
44 ssid ABAB
45 44 a1i φABAB
46 22 13 restntr TopOpenfldTopABABABintTopOpenfld𝑡ABAB=intTopOpenfldABABAB
47 43 10 45 46 syl3anc φintTopOpenfld𝑡ABAB=intTopOpenfldABABAB
48 42 47 eleqtrrd φBintTopOpenfld𝑡ABAB
49 7 snssd φBAB
50 ssequn2 BABABB=AB
51 49 50 sylib φABB=AB
52 51 eqcomd φAB=ABB
53 52 oveq2d φTopOpenfld𝑡AB=TopOpenfld𝑡ABB
54 53 fveq2d φintTopOpenfld𝑡AB=intTopOpenfld𝑡ABB
55 ioounsn A*B*A<BABB=AB
56 1 5 3 55 syl3anc φABB=AB
57 56 eqcomd φAB=ABB
58 54 57 fveq12d φintTopOpenfld𝑡ABAB=intTopOpenfld𝑡ABBABB
59 48 58 eleqtrd φBintTopOpenfld𝑡ABBABB
60 29 31 10 12 32 59 limcres φFABlimB=FlimB
61 8 60 eleqtrrd φFBFABlimB