Description: An algebraic closure system satisfies isacs3 . (Contributed by Stefan O'Rear, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isacs3lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmre | |
|
2 | mresspw | |
|
3 | 1 2 | syl | |
4 | 3 | sspwd | |
5 | 4 | sselda | |
6 | 5 | elpwid | |
7 | sspwuni | |
|
8 | 6 7 | sylib | |
9 | 8 | adantr | |
10 | elinel1 | |
|
11 | 10 | elpwid | |
12 | elinel2 | |
|
13 | fissuni | |
|
14 | 11 12 13 | syl2anc | |
15 | 14 | ad2antll | |
16 | 1 | ad3antrrr | |
17 | eqid | |
|
18 | simprr | |
|
19 | elinel1 | |
|
20 | 19 | elpwid | |
21 | 20 | unissd | |
22 | 21 | ad2antrl | |
23 | 8 | ad2antrr | |
24 | 22 23 | sstrd | |
25 | 16 17 18 24 | mrcssd | |
26 | simpl | |
|
27 | 20 | adantl | |
28 | elinel2 | |
|
29 | 28 | adantl | |
30 | ipodrsfi | |
|
31 | 26 27 29 30 | syl3anc | |
32 | 31 | adantl | |
33 | 1 | ad3antrrr | |
34 | simprr | |
|
35 | elpwi | |
|
36 | 35 | adantl | |
37 | 36 | ad2antrr | |
38 | simprl | |
|
39 | 37 38 | sseldd | |
40 | 17 | mrcsscl | |
41 | 33 34 39 40 | syl3anc | |
42 | elssuni | |
|
43 | 42 | ad2antrl | |
44 | 41 43 | sstrd | |
45 | 32 44 | rexlimddv | |
46 | 45 | anassrs | |
47 | 46 | adantrr | |
48 | 47 | adantlrr | |
49 | 25 48 | sstrd | |
50 | 15 49 | rexlimddv | |
51 | 50 | anassrs | |
52 | 51 | ralrimiva | |
53 | 17 | acsfiel | |
54 | 53 | ad2antrr | |
55 | 9 52 54 | mpbir2and | |
56 | 55 | ex | |
57 | 56 | ralrimiva | |
58 | 1 57 | jca | |