Metamath Proof Explorer


Theorem ishpg

Description: Value of the half-plane relation for a given line D . (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p P=BaseG
ishpg.i I=ItvG
ishpg.l L=Line𝒢G
ishpg.o O=ab|aPDbPDtDtaIb
ishpg.g φG𝒢Tarski
ishpg.d φDranL
Assertion ishpg φhp𝒢GD=ab|cPaOcbOc

Proof

Step Hyp Ref Expression
1 ishpg.p P=BaseG
2 ishpg.i I=ItvG
3 ishpg.l L=Line𝒢G
4 ishpg.o O=ab|aPDbPDtDtaIb
5 ishpg.g φG𝒢Tarski
6 ishpg.d φDranL
7 elex G𝒢TarskiGV
8 fveq2 g=GLine𝒢g=Line𝒢G
9 8 3 eqtr4di g=GLine𝒢g=L
10 9 rneqd g=GranLine𝒢g=ranL
11 simpl p=Pi=Ip=P
12 11 difeq1d p=Pi=Ipd=Pd
13 12 eleq2d p=Pi=IapdaPd
14 12 eleq2d p=Pi=IcpdcPd
15 13 14 anbi12d p=Pi=IapdcpdaPdcPd
16 simpr p=Pi=Ii=I
17 16 oveqd p=Pi=Iaic=aIc
18 17 eleq2d p=Pi=ItaictaIc
19 18 rexbidv p=Pi=ItdtaictdtaIc
20 15 19 anbi12d p=Pi=IapdcpdtdtaicaPdcPdtdtaIc
21 12 eleq2d p=Pi=IbpdbPd
22 21 14 anbi12d p=Pi=IbpdcpdbPdcPd
23 16 oveqd p=Pi=Ibic=bIc
24 23 eleq2d p=Pi=ItbictbIc
25 24 rexbidv p=Pi=ItdtbictdtbIc
26 22 25 anbi12d p=Pi=IbpdcpdtdtbicbPdcPdtdtbIc
27 20 26 anbi12d p=Pi=IapdcpdtdtaicbpdcpdtdtbicaPdcPdtdtaIcbPdcPdtdtbIc
28 11 27 rexeqbidv p=Pi=IcpapdcpdtdtaicbpdcpdtdtbiccPaPdcPdtdtaIcbPdcPdtdtbIc
29 1 2 28 sbcie2s g=G[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbiccPaPdcPdtdtaIcbPdcPdtdtbIc
30 29 opabbidv g=Gab|[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic=ab|cPaPdcPdtdtaIcbPdcPdtdtbIc
31 10 30 mpteq12dv g=GdranLine𝒢gab|[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic=dranLab|cPaPdcPdtdtaIcbPdcPdtdtbIc
32 df-hpg hp𝒢=gVdranLine𝒢gab|[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic
33 3 fvexi LV
34 33 rnex ranLV
35 34 mptex dranLab|cPaPdcPdtdtaIcbPdcPdtdtbIcV
36 31 32 35 fvmpt GVhp𝒢G=dranLab|cPaPdcPdtdtaIcbPdcPdtdtbIc
37 5 7 36 3syl φhp𝒢G=dranLab|cPaPdcPdtdtaIcbPdcPdtdtbIc
38 difeq2 d=DPd=PD
39 38 eleq2d d=DaPdaPD
40 38 eleq2d d=DcPdcPD
41 39 40 anbi12d d=DaPdcPdaPDcPD
42 rexeq d=DtdtaIctDtaIc
43 41 42 anbi12d d=DaPdcPdtdtaIcaPDcPDtDtaIc
44 38 eleq2d d=DbPdbPD
45 44 40 anbi12d d=DbPdcPdbPDcPD
46 rexeq d=DtdtbIctDtbIc
47 45 46 anbi12d d=DbPdcPdtdtbIcbPDcPDtDtbIc
48 43 47 anbi12d d=DaPdcPdtdtaIcbPdcPdtdtbIcaPDcPDtDtaIcbPDcPDtDtbIc
49 48 rexbidv d=DcPaPdcPdtdtaIcbPdcPdtdtbIccPaPDcPDtDtaIcbPDcPDtDtbIc
50 49 opabbidv d=Dab|cPaPdcPdtdtaIcbPdcPdtdtbIc=ab|cPaPDcPDtDtaIcbPDcPDtDtbIc
51 50 adantl φd=Dab|cPaPdcPdtdtaIcbPdcPdtdtbIc=ab|cPaPDcPDtDtaIcbPDcPDtDtbIc
52 df-xp P×P=ab|aPbP
53 1 fvexi PV
54 53 53 xpex P×PV
55 52 54 eqeltrri ab|aPbPV
56 eldifi aPDaP
57 eldifi bPDbP
58 56 57 anim12i aPDbPDaPbP
59 58 ad2ant2r aPDcPDbPDcPDaPbP
60 59 ad2ant2r aPDcPDtDtaIcbPDcPDtDtbIcaPbP
61 60 rexlimivw cPaPDcPDtDtaIcbPDcPDtDtbIcaPbP
62 61 ssopab2i ab|cPaPDcPDtDtaIcbPDcPDtDtbIcab|aPbP
63 55 62 ssexi ab|cPaPDcPDtDtaIcbPDcPDtDtbIcV
64 63 a1i φab|cPaPDcPDtDtaIcbPDcPDtDtbIcV
65 37 51 6 64 fvmptd φhp𝒢GD=ab|cPaPDcPDtDtaIcbPDcPDtDtbIc
66 vex aV
67 vex cV
68 eleq1w e=aePDaPD
69 68 anbi1d e=aePDfPDaPDfPD
70 oveq1 e=aeIf=aIf
71 70 eleq2d e=ateIftaIf
72 71 rexbidv e=atDteIftDtaIf
73 69 72 anbi12d e=aePDfPDtDteIfaPDfPDtDtaIf
74 eleq1w f=cfPDcPD
75 74 anbi2d f=caPDfPDaPDcPD
76 oveq2 f=caIf=aIc
77 76 eleq2d f=ctaIftaIc
78 77 rexbidv f=ctDtaIftDtaIc
79 75 78 anbi12d f=caPDfPDtDtaIfaPDcPDtDtaIc
80 simpl a=eb=fa=e
81 80 eleq1d a=eb=faPDePD
82 simpr a=eb=fb=f
83 82 eleq1d a=eb=fbPDfPD
84 81 83 anbi12d a=eb=faPDbPDePDfPD
85 oveq12 a=eb=faIb=eIf
86 85 eleq2d a=eb=ftaIbteIf
87 86 rexbidv a=eb=ftDtaIbtDteIf
88 84 87 anbi12d a=eb=faPDbPDtDtaIbePDfPDtDteIf
89 88 cbvopabv ab|aPDbPDtDtaIb=ef|ePDfPDtDteIf
90 4 89 eqtri O=ef|ePDfPDtDteIf
91 66 67 73 79 90 brab aOcaPDcPDtDtaIc
92 vex bV
93 eleq1w e=bePDbPD
94 93 anbi1d e=bePDfPDbPDfPD
95 oveq1 e=beIf=bIf
96 95 eleq2d e=bteIftbIf
97 96 rexbidv e=btDteIftDtbIf
98 94 97 anbi12d e=bePDfPDtDteIfbPDfPDtDtbIf
99 74 anbi2d f=cbPDfPDbPDcPD
100 oveq2 f=cbIf=bIc
101 100 eleq2d f=ctbIftbIc
102 101 rexbidv f=ctDtbIftDtbIc
103 99 102 anbi12d f=cbPDfPDtDtbIfbPDcPDtDtbIc
104 92 67 98 103 90 brab bOcbPDcPDtDtbIc
105 91 104 anbi12i aOcbOcaPDcPDtDtaIcbPDcPDtDtbIc
106 105 rexbii cPaOcbOccPaPDcPDtDtaIcbPDcPDtDtbIc
107 106 opabbii ab|cPaOcbOc=ab|cPaPDcPDtDtaIcbPDcPDtDtbIc
108 65 107 eqtr4di φhp𝒢GD=ab|cPaOcbOc