Description: Membership in the class of homotopies between two continuous functions. (Contributed by Mario Carneiro, 22-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ishtpy.1 | |
|
ishtpy.3 | |
||
ishtpy.4 | |
||
Assertion | ishtpy | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishtpy.1 | |
|
2 | ishtpy.3 | |
|
3 | ishtpy.4 | |
|
4 | df-htpy | |
|
5 | 4 | a1i | |
6 | simprl | |
|
7 | simprr | |
|
8 | 6 7 | oveq12d | |
9 | 6 | oveq1d | |
10 | 9 7 | oveq12d | |
11 | 6 | unieqd | |
12 | toponuni | |
|
13 | 1 12 | syl | |
14 | 13 | adantr | |
15 | 11 14 | eqtr4d | |
16 | 15 | raleqdv | |
17 | 10 16 | rabeqbidv | |
18 | 8 8 17 | mpoeq123dv | |
19 | topontop | |
|
20 | 1 19 | syl | |
21 | cntop2 | |
|
22 | 2 21 | syl | |
23 | ovex | |
|
24 | ssrab2 | |
|
25 | 23 24 | elpwi2 | |
26 | 25 | rgen2w | |
27 | eqid | |
|
28 | 27 | fmpo | |
29 | 26 28 | mpbi | |
30 | ovex | |
|
31 | 30 30 | xpex | |
32 | 23 | pwex | |
33 | fex2 | |
|
34 | 29 31 32 33 | mp3an | |
35 | 34 | a1i | |
36 | 5 18 20 22 35 | ovmpod | |
37 | fveq1 | |
|
38 | 37 | eqeq2d | |
39 | fveq1 | |
|
40 | 39 | eqeq2d | |
41 | 38 40 | bi2anan9 | |
42 | 41 | adantl | |
43 | 42 | ralbidv | |
44 | 43 | rabbidv | |
45 | 23 | rabex | |
46 | 45 | a1i | |
47 | 36 44 2 3 46 | ovmpod | |
48 | 47 | eleq2d | |
49 | oveq | |
|
50 | 49 | eqeq1d | |
51 | oveq | |
|
52 | 51 | eqeq1d | |
53 | 50 52 | anbi12d | |
54 | 53 | ralbidv | |
55 | 54 | elrab | |
56 | 48 55 | bitrdi | |