| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
|
| 2 |
1
|
anbi2d |
|
| 3 |
2
|
exbidv |
|
| 4 |
|
breq2 |
|
| 5 |
4
|
anbi2d |
|
| 6 |
5
|
exbidv |
|
| 7 |
|
sseq1 |
|
| 8 |
7
|
adantl |
|
| 9 |
|
breq1 |
|
| 10 |
|
breq2 |
|
| 11 |
9 10
|
sylan9bbr |
|
| 12 |
8 11
|
anbi12d |
|
| 13 |
12
|
cbvexdvaw |
|
| 14 |
|
0ss |
|
| 15 |
|
peano1 |
|
| 16 |
|
enrefnn |
|
| 17 |
15 16
|
ax-mp |
|
| 18 |
|
0ex |
|
| 19 |
|
sseq1 |
|
| 20 |
|
breq1 |
|
| 21 |
19 20
|
anbi12d |
|
| 22 |
18 21
|
spcev |
|
| 23 |
14 17 22
|
mp2an |
|
| 24 |
23
|
a1i |
|
| 25 |
|
ssdif0 |
|
| 26 |
|
eqss |
|
| 27 |
|
breq1 |
|
| 28 |
27
|
biimpa |
|
| 29 |
|
rspe |
|
| 30 |
28 29
|
sylan2 |
|
| 31 |
|
isfi |
|
| 32 |
30 31
|
sylibr |
|
| 33 |
32
|
expcom |
|
| 34 |
26 33
|
sylanbr |
|
| 35 |
34
|
ex |
|
| 36 |
25 35
|
sylan2br |
|
| 37 |
36
|
expcom |
|
| 38 |
37
|
3impd |
|
| 39 |
38
|
com12 |
|
| 40 |
39
|
con3d |
|
| 41 |
|
bren |
|
| 42 |
|
neq0 |
|
| 43 |
|
eldifi |
|
| 44 |
43
|
snssd |
|
| 45 |
|
unss |
|
| 46 |
45
|
biimpi |
|
| 47 |
44 46
|
sylan2 |
|
| 48 |
47
|
ad2ant2r |
|
| 49 |
|
vex |
|
| 50 |
|
vex |
|
| 51 |
49 50
|
f1osn |
|
| 52 |
51
|
jctr |
|
| 53 |
|
eldifn |
|
| 54 |
|
disjsn |
|
| 55 |
53 54
|
sylibr |
|
| 56 |
|
nnord |
|
| 57 |
|
orddisj |
|
| 58 |
56 57
|
syl |
|
| 59 |
55 58
|
anim12i |
|
| 60 |
|
f1oun |
|
| 61 |
52 59 60
|
syl2an |
|
| 62 |
|
df-suc |
|
| 63 |
|
f1oeq3 |
|
| 64 |
62 63
|
ax-mp |
|
| 65 |
|
vex |
|
| 66 |
|
snex |
|
| 67 |
65 66
|
unex |
|
| 68 |
|
f1oeq1 |
|
| 69 |
67 68
|
spcev |
|
| 70 |
|
bren |
|
| 71 |
69 70
|
sylibr |
|
| 72 |
64 71
|
sylbir |
|
| 73 |
61 72
|
syl |
|
| 74 |
73
|
adantll |
|
| 75 |
|
vex |
|
| 76 |
|
snex |
|
| 77 |
75 76
|
unex |
|
| 78 |
|
sseq1 |
|
| 79 |
|
breq1 |
|
| 80 |
78 79
|
anbi12d |
|
| 81 |
77 80
|
spcev |
|
| 82 |
48 74 81
|
syl2anc |
|
| 83 |
82
|
expcom |
|
| 84 |
83
|
ex |
|
| 85 |
84
|
exlimiv |
|
| 86 |
42 85
|
sylbi |
|
| 87 |
86
|
com13 |
|
| 88 |
87
|
expcom |
|
| 89 |
88
|
exlimiv |
|
| 90 |
41 89
|
sylbi |
|
| 91 |
90
|
3imp21 |
|
| 92 |
40 91
|
syld |
|
| 93 |
92
|
3expia |
|
| 94 |
93
|
exlimiv |
|
| 95 |
94
|
com3l |
|
| 96 |
3 6 13 24 95
|
finds2 |
|
| 97 |
96
|
com12 |
|
| 98 |
97
|
ralrimiv |
|