Metamath Proof Explorer


Theorem isncvsngp

Description: A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses isncvsngp.v V = Base W
isncvsngp.n N = norm W
isncvsngp.s · ˙ = W
isncvsngp.f F = Scalar W
isncvsngp.k K = Base F
Assertion isncvsngp W NrmVec ℂVec W ℂVec W NrmGrp x V k K N k · ˙ x = k N x

Proof

Step Hyp Ref Expression
1 isncvsngp.v V = Base W
2 isncvsngp.n N = norm W
3 isncvsngp.s · ˙ = W
4 isncvsngp.f F = Scalar W
5 isncvsngp.k K = Base F
6 isnvc W NrmVec W NrmMod W LVec
7 6 biancomi W NrmVec W LVec W NrmMod
8 7 a1i W ℂVec W NrmVec W LVec W NrmMod
9 id W ℂVec W ℂVec
10 9 cvslvec W ℂVec W LVec
11 10 biantrurd W ℂVec W NrmMod W LVec W NrmMod
12 9 cvsclm W ℂVec W CMod
13 eqid norm F = norm F
14 1 2 3 4 5 13 isnlm W NrmMod W NrmGrp W LMod F NrmRing k K x V N k · ˙ x = norm F k N x
15 3anass W NrmGrp W LMod F NrmRing W NrmGrp W LMod F NrmRing
16 15 biancomi W NrmGrp W LMod F NrmRing W LMod F NrmRing W NrmGrp
17 16 anbi1i W NrmGrp W LMod F NrmRing k K x V N k · ˙ x = norm F k N x W LMod F NrmRing W NrmGrp k K x V N k · ˙ x = norm F k N x
18 anass W LMod F NrmRing W NrmGrp k K x V N k · ˙ x = norm F k N x W LMod F NrmRing W NrmGrp k K x V N k · ˙ x = norm F k N x
19 17 18 bitri W NrmGrp W LMod F NrmRing k K x V N k · ˙ x = norm F k N x W LMod F NrmRing W NrmGrp k K x V N k · ˙ x = norm F k N x
20 19 a1i W CMod W NrmGrp W LMod F NrmRing k K x V N k · ˙ x = norm F k N x W LMod F NrmRing W NrmGrp k K x V N k · ˙ x = norm F k N x
21 clmlmod W CMod W LMod
22 4 5 clmsca W CMod F = fld 𝑠 K
23 cnnrg fld NrmRing
24 4 5 clmsubrg W CMod K SubRing fld
25 eqid fld 𝑠 K = fld 𝑠 K
26 25 subrgnrg fld NrmRing K SubRing fld fld 𝑠 K NrmRing
27 23 24 26 sylancr W CMod fld 𝑠 K NrmRing
28 22 27 eqeltrd W CMod F NrmRing
29 21 28 jca W CMod W LMod F NrmRing
30 29 biantrurd W CMod W NrmGrp k K x V N k · ˙ x = norm F k N x W LMod F NrmRing W NrmGrp k K x V N k · ˙ x = norm F k N x
31 ralcom k K x V N k · ˙ x = norm F k N x x V k K N k · ˙ x = norm F k N x
32 22 fveq2d W CMod norm F = norm fld 𝑠 K
33 subrgsubg K SubRing fld K SubGrp fld
34 eqid norm fld = norm fld
35 eqid norm fld 𝑠 K = norm fld 𝑠 K
36 25 34 35 subgnm K SubGrp fld norm fld 𝑠 K = norm fld K
37 24 33 36 3syl W CMod norm fld 𝑠 K = norm fld K
38 32 37 eqtrd W CMod norm F = norm fld K
39 38 adantr W CMod x V k K norm F = norm fld K
40 39 fveq1d W CMod x V k K norm F k = norm fld K k
41 cnfldnm abs = norm fld
42 41 eqcomi norm fld = abs
43 42 reseq1i norm fld K = abs K
44 43 fveq1i norm fld K k = abs K k
45 fvres k K abs K k = k
46 45 ad2antll W CMod x V k K abs K k = k
47 44 46 syl5eq W CMod x V k K norm fld K k = k
48 40 47 eqtrd W CMod x V k K norm F k = k
49 48 oveq1d W CMod x V k K norm F k N x = k N x
50 49 eqeq2d W CMod x V k K N k · ˙ x = norm F k N x N k · ˙ x = k N x
51 50 2ralbidva W CMod x V k K N k · ˙ x = norm F k N x x V k K N k · ˙ x = k N x
52 31 51 syl5bb W CMod k K x V N k · ˙ x = norm F k N x x V k K N k · ˙ x = k N x
53 52 anbi2d W CMod W NrmGrp k K x V N k · ˙ x = norm F k N x W NrmGrp x V k K N k · ˙ x = k N x
54 20 30 53 3bitr2d W CMod W NrmGrp W LMod F NrmRing k K x V N k · ˙ x = norm F k N x W NrmGrp x V k K N k · ˙ x = k N x
55 14 54 syl5bb W CMod W NrmMod W NrmGrp x V k K N k · ˙ x = k N x
56 12 55 syl W ℂVec W NrmMod W NrmGrp x V k K N k · ˙ x = k N x
57 8 11 56 3bitr2d W ℂVec W NrmVec W NrmGrp x V k K N k · ˙ x = k N x
58 57 pm5.32i W ℂVec W NrmVec W ℂVec W NrmGrp x V k K N k · ˙ x = k N x
59 elin W NrmVec ℂVec W NrmVec W ℂVec
60 59 biancomi W NrmVec ℂVec W ℂVec W NrmVec
61 3anass W ℂVec W NrmGrp x V k K N k · ˙ x = k N x W ℂVec W NrmGrp x V k K N k · ˙ x = k N x
62 58 60 61 3bitr4i W NrmVec ℂVec W ℂVec W NrmGrp x V k K N k · ˙ x = k N x