Metamath Proof Explorer


Theorem isncvsngp

Description: A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses isncvsngp.v V=BaseW
isncvsngp.n N=normW
isncvsngp.s ·˙=W
isncvsngp.f F=ScalarW
isncvsngp.k K=BaseF
Assertion isncvsngp WNrmVecℂVecWℂVecWNrmGrpxVkKNk·˙x=kNx

Proof

Step Hyp Ref Expression
1 isncvsngp.v V=BaseW
2 isncvsngp.n N=normW
3 isncvsngp.s ·˙=W
4 isncvsngp.f F=ScalarW
5 isncvsngp.k K=BaseF
6 isnvc WNrmVecWNrmModWLVec
7 6 biancomi WNrmVecWLVecWNrmMod
8 7 a1i WℂVecWNrmVecWLVecWNrmMod
9 id WℂVecWℂVec
10 9 cvslvec WℂVecWLVec
11 10 biantrurd WℂVecWNrmModWLVecWNrmMod
12 9 cvsclm WℂVecWCMod
13 eqid normF=normF
14 1 2 3 4 5 13 isnlm WNrmModWNrmGrpWLModFNrmRingkKxVNk·˙x=normFkNx
15 3anass WNrmGrpWLModFNrmRingWNrmGrpWLModFNrmRing
16 15 biancomi WNrmGrpWLModFNrmRingWLModFNrmRingWNrmGrp
17 16 anbi1i WNrmGrpWLModFNrmRingkKxVNk·˙x=normFkNxWLModFNrmRingWNrmGrpkKxVNk·˙x=normFkNx
18 anass WLModFNrmRingWNrmGrpkKxVNk·˙x=normFkNxWLModFNrmRingWNrmGrpkKxVNk·˙x=normFkNx
19 17 18 bitri WNrmGrpWLModFNrmRingkKxVNk·˙x=normFkNxWLModFNrmRingWNrmGrpkKxVNk·˙x=normFkNx
20 19 a1i WCModWNrmGrpWLModFNrmRingkKxVNk·˙x=normFkNxWLModFNrmRingWNrmGrpkKxVNk·˙x=normFkNx
21 clmlmod WCModWLMod
22 4 5 clmsca WCModF=fld𝑠K
23 cnnrg fldNrmRing
24 4 5 clmsubrg WCModKSubRingfld
25 eqid fld𝑠K=fld𝑠K
26 25 subrgnrg fldNrmRingKSubRingfldfld𝑠KNrmRing
27 23 24 26 sylancr WCModfld𝑠KNrmRing
28 22 27 eqeltrd WCModFNrmRing
29 21 28 jca WCModWLModFNrmRing
30 29 biantrurd WCModWNrmGrpkKxVNk·˙x=normFkNxWLModFNrmRingWNrmGrpkKxVNk·˙x=normFkNx
31 ralcom kKxVNk·˙x=normFkNxxVkKNk·˙x=normFkNx
32 22 fveq2d WCModnormF=normfld𝑠K
33 subrgsubg KSubRingfldKSubGrpfld
34 eqid normfld=normfld
35 eqid normfld𝑠K=normfld𝑠K
36 25 34 35 subgnm KSubGrpfldnormfld𝑠K=normfldK
37 24 33 36 3syl WCModnormfld𝑠K=normfldK
38 32 37 eqtrd WCModnormF=normfldK
39 38 adantr WCModxVkKnormF=normfldK
40 39 fveq1d WCModxVkKnormFk=normfldKk
41 cnfldnm abs=normfld
42 41 eqcomi normfld=abs
43 42 reseq1i normfldK=absK
44 43 fveq1i normfldKk=absKk
45 fvres kKabsKk=k
46 45 ad2antll WCModxVkKabsKk=k
47 44 46 eqtrid WCModxVkKnormfldKk=k
48 40 47 eqtrd WCModxVkKnormFk=k
49 48 oveq1d WCModxVkKnormFkNx=kNx
50 49 eqeq2d WCModxVkKNk·˙x=normFkNxNk·˙x=kNx
51 50 2ralbidva WCModxVkKNk·˙x=normFkNxxVkKNk·˙x=kNx
52 31 51 bitrid WCModkKxVNk·˙x=normFkNxxVkKNk·˙x=kNx
53 52 anbi2d WCModWNrmGrpkKxVNk·˙x=normFkNxWNrmGrpxVkKNk·˙x=kNx
54 20 30 53 3bitr2d WCModWNrmGrpWLModFNrmRingkKxVNk·˙x=normFkNxWNrmGrpxVkKNk·˙x=kNx
55 14 54 bitrid WCModWNrmModWNrmGrpxVkKNk·˙x=kNx
56 12 55 syl WℂVecWNrmModWNrmGrpxVkKNk·˙x=kNx
57 8 11 56 3bitr2d WℂVecWNrmVecWNrmGrpxVkKNk·˙x=kNx
58 57 pm5.32i WℂVecWNrmVecWℂVecWNrmGrpxVkKNk·˙x=kNx
59 elin WNrmVecℂVecWNrmVecWℂVec
60 59 biancomi WNrmVecℂVecWℂVecWNrmVec
61 3anass WℂVecWNrmGrpxVkKNk·˙x=kNxWℂVecWNrmGrpxVkKNk·˙x=kNx
62 58 60 61 3bitr4i WNrmVecℂVecWℂVecWNrmGrpxVkKNk·˙x=kNx