Description: A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008) (Revised by AV, 7-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isncvsngp.v | |
|
isncvsngp.n | |
||
isncvsngp.s | |
||
isncvsngp.f | |
||
isncvsngp.k | |
||
Assertion | isncvsngp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isncvsngp.v | |
|
2 | isncvsngp.n | |
|
3 | isncvsngp.s | |
|
4 | isncvsngp.f | |
|
5 | isncvsngp.k | |
|
6 | isnvc | |
|
7 | 6 | biancomi | |
8 | 7 | a1i | |
9 | id | |
|
10 | 9 | cvslvec | |
11 | 10 | biantrurd | |
12 | 9 | cvsclm | |
13 | eqid | |
|
14 | 1 2 3 4 5 13 | isnlm | |
15 | 3anass | |
|
16 | 15 | biancomi | |
17 | 16 | anbi1i | |
18 | anass | |
|
19 | 17 18 | bitri | |
20 | 19 | a1i | |
21 | clmlmod | |
|
22 | 4 5 | clmsca | |
23 | cnnrg | |
|
24 | 4 5 | clmsubrg | |
25 | eqid | |
|
26 | 25 | subrgnrg | |
27 | 23 24 26 | sylancr | |
28 | 22 27 | eqeltrd | |
29 | 21 28 | jca | |
30 | 29 | biantrurd | |
31 | ralcom | |
|
32 | 22 | fveq2d | |
33 | subrgsubg | |
|
34 | eqid | |
|
35 | eqid | |
|
36 | 25 34 35 | subgnm | |
37 | 24 33 36 | 3syl | |
38 | 32 37 | eqtrd | |
39 | 38 | adantr | |
40 | 39 | fveq1d | |
41 | cnfldnm | |
|
42 | 41 | eqcomi | |
43 | 42 | reseq1i | |
44 | 43 | fveq1i | |
45 | fvres | |
|
46 | 45 | ad2antll | |
47 | 44 46 | eqtrid | |
48 | 40 47 | eqtrd | |
49 | 48 | oveq1d | |
50 | 49 | eqeq2d | |
51 | 50 | 2ralbidva | |
52 | 31 51 | bitrid | |
53 | 52 | anbi2d | |
54 | 20 30 53 | 3bitr2d | |
55 | 14 54 | bitrid | |
56 | 12 55 | syl | |
57 | 8 11 56 | 3bitr2d | |
58 | 57 | pm5.32i | |
59 | elin | |
|
60 | 59 | biancomi | |
61 | 3anass | |
|
62 | 58 60 61 | 3bitr4i | |