Metamath Proof Explorer


Theorem itg1val2

Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion itg1val2 Fdom1AFinranF0AA01F=xAxvolF-1x

Proof

Step Hyp Ref Expression
1 itg1val Fdom11F=xranF0xvolF-1x
2 1 adantr Fdom1AFinranF0AA01F=xranF0xvolF-1x
3 simpr2 Fdom1AFinranF0AA0ranF0A
4 3 sselda Fdom1AFinranF0AA0xranF0xA
5 simpr3 Fdom1AFinranF0AA0A0
6 5 sselda Fdom1AFinranF0AA0xAx0
7 eldifi x0x
8 6 7 syl Fdom1AFinranF0AA0xAx
9 i1fima2sn Fdom1x0volF-1x
10 9 adantlr Fdom1AFinranF0AA0x0volF-1x
11 6 10 syldan Fdom1AFinranF0AA0xAvolF-1x
12 8 11 remulcld Fdom1AFinranF0AA0xAxvolF-1x
13 12 recnd Fdom1AFinranF0AA0xAxvolF-1x
14 4 13 syldan Fdom1AFinranF0AA0xranF0xvolF-1x
15 i1ff Fdom1F:
16 15 ad2antrr Fdom1AFinranF0AA0xAranF0F:
17 ffrn F:F:ranF
18 16 17 syl Fdom1AFinranF0AA0xAranF0F:ranF
19 eldifn xAranF0¬xranF0
20 19 adantl Fdom1AFinranF0AA0xAranF0¬xranF0
21 eldif xranF0xranF¬x0
22 simplr3 Fdom1AFinranF0AA0xAranF0A0
23 22 ssdifssd Fdom1AFinranF0AA0xAranF0AranF00
24 simpr Fdom1AFinranF0AA0xAranF0xAranF0
25 23 24 sseldd Fdom1AFinranF0AA0xAranF0x0
26 eldifn x0¬x0
27 25 26 syl Fdom1AFinranF0AA0xAranF0¬x0
28 27 biantrud Fdom1AFinranF0AA0xAranF0xranFxranF¬x0
29 21 28 bitr4id Fdom1AFinranF0AA0xAranF0xranF0xranF
30 20 29 mtbid Fdom1AFinranF0AA0xAranF0¬xranF
31 disjsn ranFx=¬xranF
32 30 31 sylibr Fdom1AFinranF0AA0xAranF0ranFx=
33 fimacnvdisj F:ranFranFx=F-1x=
34 18 32 33 syl2anc Fdom1AFinranF0AA0xAranF0F-1x=
35 34 fveq2d Fdom1AFinranF0AA0xAranF0volF-1x=vol
36 0mbl domvol
37 mblvol domvolvol=vol*
38 36 37 ax-mp vol=vol*
39 ovol0 vol*=0
40 38 39 eqtri vol=0
41 35 40 eqtrdi Fdom1AFinranF0AA0xAranF0volF-1x=0
42 41 oveq2d Fdom1AFinranF0AA0xAranF0xvolF-1x=x0
43 eldifi xAranF0xA
44 43 8 sylan2 Fdom1AFinranF0AA0xAranF0x
45 44 recnd Fdom1AFinranF0AA0xAranF0x
46 45 mul01d Fdom1AFinranF0AA0xAranF0x0=0
47 42 46 eqtrd Fdom1AFinranF0AA0xAranF0xvolF-1x=0
48 simpr1 Fdom1AFinranF0AA0AFin
49 3 14 47 48 fsumss Fdom1AFinranF0AA0xranF0xvolF-1x=xAxvolF-1x
50 2 49 eqtrd Fdom1AFinranF0AA01F=xAxvolF-1x