| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg1val |
|
| 2 |
1
|
adantr |
|
| 3 |
|
simpr2 |
|
| 4 |
3
|
sselda |
|
| 5 |
|
simpr3 |
|
| 6 |
5
|
sselda |
|
| 7 |
|
eldifi |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
i1fima2sn |
|
| 10 |
9
|
adantlr |
|
| 11 |
6 10
|
syldan |
|
| 12 |
8 11
|
remulcld |
|
| 13 |
12
|
recnd |
|
| 14 |
4 13
|
syldan |
|
| 15 |
|
i1ff |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
ffrn |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
eldifn |
|
| 20 |
19
|
adantl |
|
| 21 |
|
eldif |
|
| 22 |
|
simplr3 |
|
| 23 |
22
|
ssdifssd |
|
| 24 |
|
simpr |
|
| 25 |
23 24
|
sseldd |
|
| 26 |
|
eldifn |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
biantrud |
|
| 29 |
21 28
|
bitr4id |
|
| 30 |
20 29
|
mtbid |
|
| 31 |
|
disjsn |
|
| 32 |
30 31
|
sylibr |
|
| 33 |
|
fimacnvdisj |
|
| 34 |
18 32 33
|
syl2anc |
|
| 35 |
34
|
fveq2d |
|
| 36 |
|
0mbl |
|
| 37 |
|
mblvol |
|
| 38 |
36 37
|
ax-mp |
|
| 39 |
|
ovol0 |
|
| 40 |
38 39
|
eqtri |
|
| 41 |
35 40
|
eqtrdi |
|
| 42 |
41
|
oveq2d |
|
| 43 |
|
eldifi |
|
| 44 |
43 8
|
sylan2 |
|
| 45 |
44
|
recnd |
|
| 46 |
45
|
mul01d |
|
| 47 |
42 46
|
eqtrd |
|
| 48 |
|
simpr1 |
|
| 49 |
3 14 47 48
|
fsumss |
|
| 50 |
2 49
|
eqtrd |
|