Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | itg1val2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg1val | |
|
2 | 1 | adantr | |
3 | simpr2 | |
|
4 | 3 | sselda | |
5 | simpr3 | |
|
6 | 5 | sselda | |
7 | eldifi | |
|
8 | 6 7 | syl | |
9 | i1fima2sn | |
|
10 | 9 | adantlr | |
11 | 6 10 | syldan | |
12 | 8 11 | remulcld | |
13 | 12 | recnd | |
14 | 4 13 | syldan | |
15 | i1ff | |
|
16 | 15 | ad2antrr | |
17 | ffrn | |
|
18 | 16 17 | syl | |
19 | eldifn | |
|
20 | 19 | adantl | |
21 | eldif | |
|
22 | simplr3 | |
|
23 | 22 | ssdifssd | |
24 | simpr | |
|
25 | 23 24 | sseldd | |
26 | eldifn | |
|
27 | 25 26 | syl | |
28 | 27 | biantrud | |
29 | 21 28 | bitr4id | |
30 | 20 29 | mtbid | |
31 | disjsn | |
|
32 | 30 31 | sylibr | |
33 | fimacnvdisj | |
|
34 | 18 32 33 | syl2anc | |
35 | 34 | fveq2d | |
36 | 0mbl | |
|
37 | mblvol | |
|
38 | 36 37 | ax-mp | |
39 | ovol0 | |
|
40 | 38 39 | eqtri | |
41 | 35 40 | eqtrdi | |
42 | 41 | oveq2d | |
43 | eldifi | |
|
44 | 43 8 | sylan2 | |
45 | 44 | recnd | |
46 | 45 | mul01d | |
47 | 42 46 | eqtrd | |
48 | simpr1 | |
|
49 | 3 14 47 48 | fsumss | |
50 | 2 49 | eqtrd | |