Metamath Proof Explorer


Theorem itg2cn

Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses itg2cn.1 φ F : 0 +∞
itg2cn.2 φ F MblFn
itg2cn.3 φ 2 F
itg2cn.4 φ C +
Assertion itg2cn φ d + u dom vol vol u < d 2 x if x u F x 0 < C

Proof

Step Hyp Ref Expression
1 itg2cn.1 φ F : 0 +∞
2 itg2cn.2 φ F MblFn
3 itg2cn.3 φ 2 F
4 itg2cn.4 φ C +
5 4 rphalfcld φ C 2 +
6 3 5 ltsubrpd φ 2 F C 2 < 2 F
7 5 rpred φ C 2
8 3 7 resubcld φ 2 F C 2
9 8 3 ltnled φ 2 F C 2 < 2 F ¬ 2 F 2 F C 2
10 6 9 mpbid φ ¬ 2 F 2 F C 2
11 1 ffvelrnda φ x F x 0 +∞
12 elrege0 F x 0 +∞ F x 0 F x
13 11 12 sylib φ x F x 0 F x
14 13 simpld φ x F x
15 14 rexrd φ x F x *
16 13 simprd φ x 0 F x
17 elxrge0 F x 0 +∞ F x * 0 F x
18 15 16 17 sylanbrc φ x F x 0 +∞
19 0e0iccpnf 0 0 +∞
20 ifcl F x 0 +∞ 0 0 +∞ if F x n F x 0 0 +∞
21 18 19 20 sylancl φ x if F x n F x 0 0 +∞
22 21 adantlr φ n x if F x n F x 0 0 +∞
23 22 fmpttd φ n x if F x n F x 0 : 0 +∞
24 itg2cl x if F x n F x 0 : 0 +∞ 2 x if F x n F x 0 *
25 23 24 syl φ n 2 x if F x n F x 0 *
26 25 fmpttd φ n 2 x if F x n F x 0 : *
27 26 frnd φ ran n 2 x if F x n F x 0 *
28 8 rexrd φ 2 F C 2 *
29 supxrleub ran n 2 x if F x n F x 0 * 2 F C 2 * sup ran n 2 x if F x n F x 0 * < 2 F C 2 z ran n 2 x if F x n F x 0 z 2 F C 2
30 27 28 29 syl2anc φ sup ran n 2 x if F x n F x 0 * < 2 F C 2 z ran n 2 x if F x n F x 0 z 2 F C 2
31 1 2 3 itg2cnlem1 φ sup ran n 2 x if F x n F x 0 * < = 2 F
32 31 breq1d φ sup ran n 2 x if F x n F x 0 * < 2 F C 2 2 F 2 F C 2
33 26 ffnd φ n 2 x if F x n F x 0 Fn
34 breq1 z = n 2 x if F x n F x 0 m z 2 F C 2 n 2 x if F x n F x 0 m 2 F C 2
35 34 ralrn n 2 x if F x n F x 0 Fn z ran n 2 x if F x n F x 0 z 2 F C 2 m n 2 x if F x n F x 0 m 2 F C 2
36 breq2 n = m F x n F x m
37 36 ifbid n = m if F x n F x 0 = if F x m F x 0
38 37 mpteq2dv n = m x if F x n F x 0 = x if F x m F x 0
39 38 fveq2d n = m 2 x if F x n F x 0 = 2 x if F x m F x 0
40 eqid n 2 x if F x n F x 0 = n 2 x if F x n F x 0
41 fvex 2 x if F x m F x 0 V
42 39 40 41 fvmpt m n 2 x if F x n F x 0 m = 2 x if F x m F x 0
43 42 breq1d m n 2 x if F x n F x 0 m 2 F C 2 2 x if F x m F x 0 2 F C 2
44 43 ralbiia m n 2 x if F x n F x 0 m 2 F C 2 m 2 x if F x m F x 0 2 F C 2
45 35 44 bitrdi n 2 x if F x n F x 0 Fn z ran n 2 x if F x n F x 0 z 2 F C 2 m 2 x if F x m F x 0 2 F C 2
46 33 45 syl φ z ran n 2 x if F x n F x 0 z 2 F C 2 m 2 x if F x m F x 0 2 F C 2
47 30 32 46 3bitr3d φ 2 F 2 F C 2 m 2 x if F x m F x 0 2 F C 2
48 10 47 mtbid φ ¬ m 2 x if F x m F x 0 2 F C 2
49 rexnal m ¬ 2 x if F x m F x 0 2 F C 2 ¬ m 2 x if F x m F x 0 2 F C 2
50 48 49 sylibr φ m ¬ 2 x if F x m F x 0 2 F C 2
51 1 adantr φ m ¬ 2 x if F x m F x 0 2 F C 2 F : 0 +∞
52 2 adantr φ m ¬ 2 x if F x m F x 0 2 F C 2 F MblFn
53 3 adantr φ m ¬ 2 x if F x m F x 0 2 F C 2 2 F
54 4 adantr φ m ¬ 2 x if F x m F x 0 2 F C 2 C +
55 simprl φ m ¬ 2 x if F x m F x 0 2 F C 2 m
56 simprr φ m ¬ 2 x if F x m F x 0 2 F C 2 ¬ 2 x if F x m F x 0 2 F C 2
57 fveq2 x = y F x = F y
58 57 breq1d x = y F x m F y m
59 58 57 ifbieq1d x = y if F x m F x 0 = if F y m F y 0
60 59 cbvmptv x if F x m F x 0 = y if F y m F y 0
61 60 fveq2i 2 x if F x m F x 0 = 2 y if F y m F y 0
62 61 breq1i 2 x if F x m F x 0 2 F C 2 2 y if F y m F y 0 2 F C 2
63 56 62 sylnib φ m ¬ 2 x if F x m F x 0 2 F C 2 ¬ 2 y if F y m F y 0 2 F C 2
64 51 52 53 54 55 63 itg2cnlem2 φ m ¬ 2 x if F x m F x 0 2 F C 2 d + u dom vol vol u < d 2 y if y u F y 0 < C
65 elequ1 x = y x u y u
66 65 57 ifbieq1d x = y if x u F x 0 = if y u F y 0
67 66 cbvmptv x if x u F x 0 = y if y u F y 0
68 67 fveq2i 2 x if x u F x 0 = 2 y if y u F y 0
69 68 breq1i 2 x if x u F x 0 < C 2 y if y u F y 0 < C
70 69 imbi2i vol u < d 2 x if x u F x 0 < C vol u < d 2 y if y u F y 0 < C
71 70 ralbii u dom vol vol u < d 2 x if x u F x 0 < C u dom vol vol u < d 2 y if y u F y 0 < C
72 71 rexbii d + u dom vol vol u < d 2 x if x u F x 0 < C d + u dom vol vol u < d 2 y if y u F y 0 < C
73 64 72 sylibr φ m ¬ 2 x if F x m F x 0 2 F C 2 d + u dom vol vol u < d 2 x if x u F x 0 < C
74 50 73 rexlimddv φ d + u dom vol vol u < d 2 x if x u F x 0 < C