Metamath Proof Explorer


Theorem knoppndvlem6

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem6.t T = x x + 1 2 x
knoppndvlem6.f F = y n 0 C n T 2 N n y
knoppndvlem6.w W = w i 0 F w i
knoppndvlem6.a A = 2 N J 2 M
knoppndvlem6.c φ C 1 1
knoppndvlem6.j φ J 0
knoppndvlem6.m φ M
knoppndvlem6.n φ N
Assertion knoppndvlem6 φ W A = i = 0 J F A i

Proof

Step Hyp Ref Expression
1 knoppndvlem6.t T = x x + 1 2 x
2 knoppndvlem6.f F = y n 0 C n T 2 N n y
3 knoppndvlem6.w W = w i 0 F w i
4 knoppndvlem6.a A = 2 N J 2 M
5 knoppndvlem6.c φ C 1 1
6 knoppndvlem6.j φ J 0
7 knoppndvlem6.m φ M
8 knoppndvlem6.n φ N
9 fveq2 w = A F w = F A
10 9 fveq1d w = A F w i = F A i
11 10 sumeq2sdv w = A i 0 F w i = i 0 F A i
12 4 a1i φ A = 2 N J 2 M
13 6 nn0zd φ J
14 8 13 7 knoppndvlem1 φ 2 N J 2 M
15 12 14 eqeltrd φ A
16 sumex i 0 F A i V
17 16 a1i φ i 0 F A i V
18 3 11 15 17 fvmptd3 φ W A = i 0 F A i
19 nn0uz 0 = 0
20 eqid J + 1 = J + 1
21 peano2nn0 J 0 J + 1 0
22 6 21 syl φ J + 1 0
23 eqidd φ i 0 F A i = F A i
24 8 adantr φ i 0 N
25 5 knoppndvlem3 φ C C < 1
26 25 simpld φ C
27 26 adantr φ i 0 C
28 15 adantr φ i 0 A
29 simpr φ i 0 i 0
30 1 2 24 27 28 29 knoppcnlem3 φ i 0 F A i
31 30 recnd φ i 0 F A i
32 1 2 3 15 5 8 knoppndvlem4 φ seq 0 + F A W A
33 seqex seq 0 + F A V
34 fvex W A V
35 33 34 breldm seq 0 + F A W A seq 0 + F A dom
36 32 35 syl φ seq 0 + F A dom
37 19 20 22 23 31 36 isumsplit φ i 0 F A i = i = 0 J + 1 - 1 F A i + i J + 1 F A i
38 6 nn0cnd φ J
39 1cnd φ 1
40 38 39 pncand φ J + 1 - 1 = J
41 40 oveq2d φ 0 J + 1 - 1 = 0 J
42 41 sumeq1d φ i = 0 J + 1 - 1 F A i = i = 0 J F A i
43 42 oveq1d φ i = 0 J + 1 - 1 F A i + i J + 1 F A i = i = 0 J F A i + i J + 1 F A i
44 18 37 43 3eqtrd φ W A = i = 0 J F A i + i J + 1 F A i
45 15 adantr φ i J + 1 A
46 eluznn0 J + 1 0 i J + 1 i 0
47 22 46 sylan φ i J + 1 i 0
48 2 45 47 knoppcnlem1 φ i J + 1 F A i = C i T 2 N i A
49 4 a1i φ i J + 1 A = 2 N J 2 M
50 49 oveq2d φ i J + 1 2 N i A = 2 N i 2 N J 2 M
51 8 adantr φ i J + 1 N
52 47 nn0zd φ i J + 1 i
53 13 adantr φ i J + 1 J
54 7 adantr φ i J + 1 M
55 eluzle i J + 1 J + 1 i
56 55 adantl φ i J + 1 J + 1 i
57 53 52 jca φ i J + 1 J i
58 zltp1le J i J < i J + 1 i
59 57 58 syl φ i J + 1 J < i J + 1 i
60 56 59 mpbird φ i J + 1 J < i
61 51 52 53 54 60 knoppndvlem2 φ i J + 1 2 N i 2 N J 2 M
62 50 61 eqeltrd φ i J + 1 2 N i A
63 1 62 dnizeq0 φ i J + 1 T 2 N i A = 0
64 63 oveq2d φ i J + 1 C i T 2 N i A = C i 0
65 26 recnd φ C
66 65 adantr φ i J + 1 C
67 66 47 expcld φ i J + 1 C i
68 67 mul01d φ i J + 1 C i 0 = 0
69 48 64 68 3eqtrd φ i J + 1 F A i = 0
70 69 sumeq2dv φ i J + 1 F A i = i J + 1 0
71 ssidd φ J + 1 J + 1
72 71 orcd φ J + 1 J + 1 J + 1 Fin
73 sumz J + 1 J + 1 J + 1 Fin i J + 1 0 = 0
74 72 73 syl φ i J + 1 0 = 0
75 70 74 eqtrd φ i J + 1 F A i = 0
76 75 oveq2d φ i = 0 J F A i + i J + 1 F A i = i = 0 J F A i + 0
77 1 2 15 26 8 knoppndvlem5 φ i = 0 J F A i
78 77 recnd φ i = 0 J F A i
79 78 addid1d φ i = 0 J F A i + 0 = i = 0 J F A i
80 76 79 eqtrd φ i = 0 J F A i + i J + 1 F A i = i = 0 J F A i
81 44 80 eqtrd φ W A = i = 0 J F A i