Description: If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | kqval.2 | |
|
Assertion | kqreglem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | |
|
2 | topontop | |
|
3 | 2 | adantr | |
4 | simplr | |
|
5 | simpll | |
|
6 | simprl | |
|
7 | 1 | kqopn | |
8 | 5 6 7 | syl2anc | |
9 | simprr | |
|
10 | toponss | |
|
11 | 5 6 10 | syl2anc | |
12 | 11 9 | sseldd | |
13 | 1 | kqfvima | |
14 | 5 6 12 13 | syl3anc | |
15 | 9 14 | mpbid | |
16 | regsep | |
|
17 | 4 8 15 16 | syl3anc | |
18 | 5 | adantr | |
19 | 1 | kqid | |
20 | 18 19 | syl | |
21 | simprl | |
|
22 | cnima | |
|
23 | 20 21 22 | syl2anc | |
24 | 12 | adantr | |
25 | simprrl | |
|
26 | 1 | kqffn | |
27 | elpreima | |
|
28 | 18 26 27 | 3syl | |
29 | 24 25 28 | mpbir2and | |
30 | 1 | kqtopon | |
31 | topontop | |
|
32 | 18 30 31 | 3syl | |
33 | elssuni | |
|
34 | 33 | ad2antrl | |
35 | eqid | |
|
36 | 35 | clscld | |
37 | 32 34 36 | syl2anc | |
38 | cnclima | |
|
39 | 20 37 38 | syl2anc | |
40 | 35 | sscls | |
41 | 32 34 40 | syl2anc | |
42 | imass2 | |
|
43 | 41 42 | syl | |
44 | eqid | |
|
45 | 44 | clsss2 | |
46 | 39 43 45 | syl2anc | |
47 | simprrr | |
|
48 | imass2 | |
|
49 | 47 48 | syl | |
50 | 6 | adantr | |
51 | 1 | kqsat | |
52 | 18 50 51 | syl2anc | |
53 | 49 52 | sseqtrd | |
54 | 46 53 | sstrd | |
55 | eleq2 | |
|
56 | fveq2 | |
|
57 | 56 | sseq1d | |
58 | 55 57 | anbi12d | |
59 | 58 | rspcev | |
60 | 23 29 54 59 | syl12anc | |
61 | 17 60 | rexlimddv | |
62 | 61 | ralrimivva | |
63 | isreg | |
|
64 | 3 62 63 | sylanbrc | |