Metamath Proof Explorer


Theorem kqreglem2

Description: If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion kqreglem2 JTopOnXKQJRegJReg

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 topontop JTopOnXJTop
3 2 adantr JTopOnXKQJRegJTop
4 simplr JTopOnXKQJRegzJwzKQJReg
5 simpll JTopOnXKQJRegzJwzJTopOnX
6 simprl JTopOnXKQJRegzJwzzJ
7 1 kqopn JTopOnXzJFzKQJ
8 5 6 7 syl2anc JTopOnXKQJRegzJwzFzKQJ
9 simprr JTopOnXKQJRegzJwzwz
10 toponss JTopOnXzJzX
11 5 6 10 syl2anc JTopOnXKQJRegzJwzzX
12 11 9 sseldd JTopOnXKQJRegzJwzwX
13 1 kqfvima JTopOnXzJwXwzFwFz
14 5 6 12 13 syl3anc JTopOnXKQJRegzJwzwzFwFz
15 9 14 mpbid JTopOnXKQJRegzJwzFwFz
16 regsep KQJRegFzKQJFwFznKQJFwnclsKQJnFz
17 4 8 15 16 syl3anc JTopOnXKQJRegzJwznKQJFwnclsKQJnFz
18 5 adantr JTopOnXKQJRegzJwznKQJFwnclsKQJnFzJTopOnX
19 1 kqid JTopOnXFJCnKQJ
20 18 19 syl JTopOnXKQJRegzJwznKQJFwnclsKQJnFzFJCnKQJ
21 simprl JTopOnXKQJRegzJwznKQJFwnclsKQJnFznKQJ
22 cnima FJCnKQJnKQJF-1nJ
23 20 21 22 syl2anc JTopOnXKQJRegzJwznKQJFwnclsKQJnFzF-1nJ
24 12 adantr JTopOnXKQJRegzJwznKQJFwnclsKQJnFzwX
25 simprrl JTopOnXKQJRegzJwznKQJFwnclsKQJnFzFwn
26 1 kqffn JTopOnXFFnX
27 elpreima FFnXwF-1nwXFwn
28 18 26 27 3syl JTopOnXKQJRegzJwznKQJFwnclsKQJnFzwF-1nwXFwn
29 24 25 28 mpbir2and JTopOnXKQJRegzJwznKQJFwnclsKQJnFzwF-1n
30 1 kqtopon JTopOnXKQJTopOnranF
31 topontop KQJTopOnranFKQJTop
32 18 30 31 3syl JTopOnXKQJRegzJwznKQJFwnclsKQJnFzKQJTop
33 elssuni nKQJnKQJ
34 33 ad2antrl JTopOnXKQJRegzJwznKQJFwnclsKQJnFznKQJ
35 eqid KQJ=KQJ
36 35 clscld KQJTopnKQJclsKQJnClsdKQJ
37 32 34 36 syl2anc JTopOnXKQJRegzJwznKQJFwnclsKQJnFzclsKQJnClsdKQJ
38 cnclima FJCnKQJclsKQJnClsdKQJF-1clsKQJnClsdJ
39 20 37 38 syl2anc JTopOnXKQJRegzJwznKQJFwnclsKQJnFzF-1clsKQJnClsdJ
40 35 sscls KQJTopnKQJnclsKQJn
41 32 34 40 syl2anc JTopOnXKQJRegzJwznKQJFwnclsKQJnFznclsKQJn
42 imass2 nclsKQJnF-1nF-1clsKQJn
43 41 42 syl JTopOnXKQJRegzJwznKQJFwnclsKQJnFzF-1nF-1clsKQJn
44 eqid J=J
45 44 clsss2 F-1clsKQJnClsdJF-1nF-1clsKQJnclsJF-1nF-1clsKQJn
46 39 43 45 syl2anc JTopOnXKQJRegzJwznKQJFwnclsKQJnFzclsJF-1nF-1clsKQJn
47 simprrr JTopOnXKQJRegzJwznKQJFwnclsKQJnFzclsKQJnFz
48 imass2 clsKQJnFzF-1clsKQJnF-1Fz
49 47 48 syl JTopOnXKQJRegzJwznKQJFwnclsKQJnFzF-1clsKQJnF-1Fz
50 6 adantr JTopOnXKQJRegzJwznKQJFwnclsKQJnFzzJ
51 1 kqsat JTopOnXzJF-1Fz=z
52 18 50 51 syl2anc JTopOnXKQJRegzJwznKQJFwnclsKQJnFzF-1Fz=z
53 49 52 sseqtrd JTopOnXKQJRegzJwznKQJFwnclsKQJnFzF-1clsKQJnz
54 46 53 sstrd JTopOnXKQJRegzJwznKQJFwnclsKQJnFzclsJF-1nz
55 eleq2 m=F-1nwmwF-1n
56 fveq2 m=F-1nclsJm=clsJF-1n
57 56 sseq1d m=F-1nclsJmzclsJF-1nz
58 55 57 anbi12d m=F-1nwmclsJmzwF-1nclsJF-1nz
59 58 rspcev F-1nJwF-1nclsJF-1nzmJwmclsJmz
60 23 29 54 59 syl12anc JTopOnXKQJRegzJwznKQJFwnclsKQJnFzmJwmclsJmz
61 17 60 rexlimddv JTopOnXKQJRegzJwzmJwmclsJmz
62 61 ralrimivva JTopOnXKQJRegzJwzmJwmclsJmz
63 isreg JRegJTopzJwzmJwmclsJmz
64 3 62 63 sylanbrc JTopOnXKQJRegJReg