Metamath Proof Explorer


Theorem lcfl6lem

Description: Lemma for lcfl6 . A functional G (whose kernel is closed by dochsnkr ) is comletely determined by a vector X in the orthocomplement in its kernel at which the functional value is 1. Note that the \ { .0. } in the X hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015)

Ref Expression
Hypotheses lcfl6lem.h H = LHyp K
lcfl6lem.o ˙ = ocH K W
lcfl6lem.u U = DVecH K W
lcfl6lem.v V = Base U
lcfl6lem.a + ˙ = + U
lcfl6lem.t · ˙ = U
lcfl6lem.s S = Scalar U
lcfl6lem.i 1 ˙ = 1 S
lcfl6lem.r R = Base S
lcfl6lem.z 0 ˙ = 0 U
lcfl6lem.f F = LFnl U
lcfl6lem.l L = LKer U
lcfl6lem.k φ K HL W H
lcfl6lem.g φ G F
lcfl6lem.x φ X ˙ L G 0 ˙
lcfl6lem.y φ G X = 1 ˙
Assertion lcfl6lem φ G = v V ι k R | w ˙ X v = w + ˙ k · ˙ X

Proof

Step Hyp Ref Expression
1 lcfl6lem.h H = LHyp K
2 lcfl6lem.o ˙ = ocH K W
3 lcfl6lem.u U = DVecH K W
4 lcfl6lem.v V = Base U
5 lcfl6lem.a + ˙ = + U
6 lcfl6lem.t · ˙ = U
7 lcfl6lem.s S = Scalar U
8 lcfl6lem.i 1 ˙ = 1 S
9 lcfl6lem.r R = Base S
10 lcfl6lem.z 0 ˙ = 0 U
11 lcfl6lem.f F = LFnl U
12 lcfl6lem.l L = LKer U
13 lcfl6lem.k φ K HL W H
14 lcfl6lem.g φ G F
15 lcfl6lem.x φ X ˙ L G 0 ˙
16 lcfl6lem.y φ G X = 1 ˙
17 eqid 0 S = 0 S
18 1 3 13 dvhlvec φ U LVec
19 1 3 13 dvhlmod φ U LMod
20 4 11 12 19 14 lkrssv φ L G V
21 1 3 4 2 dochssv K HL W H L G V ˙ L G V
22 13 20 21 syl2anc φ ˙ L G V
23 15 eldifad φ X ˙ L G
24 22 23 sseldd φ X V
25 eqid v V ι k R | w ˙ X v = w + ˙ k · ˙ X = v V ι k R | w ˙ X v = w + ˙ k · ˙ X
26 eldifsni X ˙ L G 0 ˙ X 0 ˙
27 15 26 syl φ X 0 ˙
28 eldifsn X V 0 ˙ X V X 0 ˙
29 24 27 28 sylanbrc φ X V 0 ˙
30 1 2 3 4 10 5 6 11 7 9 25 13 29 dochflcl φ v V ι k R | w ˙ X v = w + ˙ k · ˙ X F
31 1 2 3 4 10 11 12 13 14 15 dochsnkr φ L G = ˙ X
32 1 2 3 4 10 5 6 12 7 9 25 13 29 dochsnkr2 φ L v V ι k R | w ˙ X v = w + ˙ k · ˙ X = ˙ X
33 31 32 eqtr4d φ L G = L v V ι k R | w ˙ X v = w + ˙ k · ˙ X
34 1 2 3 4 5 6 10 7 9 8 13 29 25 dochfl1 φ v V ι k R | w ˙ X v = w + ˙ k · ˙ X X = 1 ˙
35 16 34 eqtr4d φ G X = v V ι k R | w ˙ X v = w + ˙ k · ˙ X X
36 1 2 3 4 7 17 10 11 12 13 14 15 dochfln0 φ G X 0 S
37 4 7 9 17 11 12 18 24 14 30 33 35 36 eqlkr3 φ G = v V ι k R | w ˙ X v = w + ˙ k · ˙ X