Metamath Proof Explorer


Theorem lcmfun

Description: The _lcm function for a union of sets of integers. (Contributed by AV, 27-Aug-2020)

Ref Expression
Assertion lcmfun YYFinZZFinlcm_YZ=lcm_Ylcmlcm_Z

Proof

Step Hyp Ref Expression
1 cleq1lem x=xYYFinYYFin
2 uneq2 x=Yx=Y
3 un0 Y=Y
4 2 3 eqtrdi x=Yx=Y
5 4 fveq2d x=lcm_Yx=lcm_Y
6 fveq2 x=lcm_x=lcm_
7 lcmf0 lcm_=1
8 6 7 eqtrdi x=lcm_x=1
9 8 oveq2d x=lcm_Ylcmlcm_x=lcm_Ylcm1
10 5 9 eqeq12d x=lcm_Yx=lcm_Ylcmlcm_xlcm_Y=lcm_Ylcm1
11 1 10 imbi12d x=xYYFinlcm_Yx=lcm_Ylcmlcm_xYYFinlcm_Y=lcm_Ylcm1
12 cleq1lem x=yxYYFinyYYFin
13 uneq2 x=yYx=Yy
14 13 fveq2d x=ylcm_Yx=lcm_Yy
15 fveq2 x=ylcm_x=lcm_y
16 15 oveq2d x=ylcm_Ylcmlcm_x=lcm_Ylcmlcm_y
17 14 16 eqeq12d x=ylcm_Yx=lcm_Ylcmlcm_xlcm_Yy=lcm_Ylcmlcm_y
18 12 17 imbi12d x=yxYYFinlcm_Yx=lcm_Ylcmlcm_xyYYFinlcm_Yy=lcm_Ylcmlcm_y
19 cleq1lem x=yzxYYFinyzYYFin
20 uneq2 x=yzYx=Yyz
21 20 fveq2d x=yzlcm_Yx=lcm_Yyz
22 fveq2 x=yzlcm_x=lcm_yz
23 22 oveq2d x=yzlcm_Ylcmlcm_x=lcm_Ylcmlcm_yz
24 21 23 eqeq12d x=yzlcm_Yx=lcm_Ylcmlcm_xlcm_Yyz=lcm_Ylcmlcm_yz
25 19 24 imbi12d x=yzxYYFinlcm_Yx=lcm_Ylcmlcm_xyzYYFinlcm_Yyz=lcm_Ylcmlcm_yz
26 cleq1lem x=ZxYYFinZYYFin
27 uneq2 x=ZYx=YZ
28 27 fveq2d x=Zlcm_Yx=lcm_YZ
29 fveq2 x=Zlcm_x=lcm_Z
30 29 oveq2d x=Zlcm_Ylcmlcm_x=lcm_Ylcmlcm_Z
31 28 30 eqeq12d x=Zlcm_Yx=lcm_Ylcmlcm_xlcm_YZ=lcm_Ylcmlcm_Z
32 26 31 imbi12d x=ZxYYFinlcm_Yx=lcm_Ylcmlcm_xZYYFinlcm_YZ=lcm_Ylcmlcm_Z
33 lcmfcl YYFinlcm_Y0
34 33 nn0zd YYFinlcm_Y
35 lcm1 lcm_Ylcm_Ylcm1=lcm_Y
36 34 35 syl YYFinlcm_Ylcm1=lcm_Y
37 nn0re lcm_Y0lcm_Y
38 nn0ge0 lcm_Y00lcm_Y
39 37 38 jca lcm_Y0lcm_Y0lcm_Y
40 33 39 syl YYFinlcm_Y0lcm_Y
41 absid lcm_Y0lcm_Ylcm_Y=lcm_Y
42 40 41 syl YYFinlcm_Y=lcm_Y
43 36 42 eqtrd YYFinlcm_Ylcm1=lcm_Y
44 43 adantl YYFinlcm_Ylcm1=lcm_Y
45 44 eqcomd YYFinlcm_Y=lcm_Ylcm1
46 unass Yyz=Yyz
47 46 eqcomi Yyz=Yyz
48 47 a1i yFinyzYYFinYyz=Yyz
49 48 fveq2d yFinyzYYFinlcm_Yyz=lcm_Yyz
50 simpl YYFinY
51 50 adantl yzYYFinY
52 unss yzyz
53 simpl yzy
54 52 53 sylbir yzy
55 54 adantr yzYYFiny
56 51 55 unssd yzYYFinYy
57 56 adantl yFinyzYYFinYy
58 unfi YFinyFinYyFin
59 58 ex YFinyFinYyFin
60 59 adantl YYFinyFinYyFin
61 60 adantl yzYYFinyFinYyFin
62 61 impcom yFinyzYYFinYyFin
63 vex zV
64 63 snss zz
65 64 biimpri zz
66 65 adantl yzz
67 52 66 sylbir yzz
68 67 adantr yzYYFinz
69 68 adantl yFinyzYYFinz
70 lcmfunsn YyYyFinzlcm_Yyz=lcm_Yylcmz
71 57 62 69 70 syl3anc yFinyzYYFinlcm_Yyz=lcm_Yylcmz
72 49 71 eqtrd yFinyzYYFinlcm_Yyz=lcm_Yylcmz
73 72 adantr yFinyzYYFinyYYFinlcm_Yy=lcm_Ylcmlcm_ylcm_Yyz=lcm_Yylcmz
74 54 anim1i yzYYFinyYYFin
75 74 adantl yFinyzYYFinyYYFin
76 id yYYFinlcm_Yy=lcm_Ylcmlcm_yyYYFinlcm_Yy=lcm_Ylcmlcm_y
77 75 76 mpan9 yFinyzYYFinyYYFinlcm_Yy=lcm_Ylcmlcm_ylcm_Yy=lcm_Ylcmlcm_y
78 77 oveq1d yFinyzYYFinyYYFinlcm_Yy=lcm_Ylcmlcm_ylcm_Yylcmz=lcm_Ylcmlcm_ylcmz
79 34 adantl yzYYFinlcm_Y
80 79 adantl yFinyzYYFinlcm_Y
81 55 anim2i yFinyzYYFinyFiny
82 81 ancomd yFinyzYYFinyyFin
83 lcmfcl yyFinlcm_y0
84 82 83 syl yFinyzYYFinlcm_y0
85 84 nn0zd yFinyzYYFinlcm_y
86 lcmass lcm_Ylcm_yzlcm_Ylcmlcm_ylcmz=lcm_Ylcmlcm_ylcmz
87 80 85 69 86 syl3anc yFinyzYYFinlcm_Ylcmlcm_ylcmz=lcm_Ylcmlcm_ylcmz
88 87 adantr yFinyzYYFinyYYFinlcm_Yy=lcm_Ylcmlcm_ylcm_Ylcmlcm_ylcmz=lcm_Ylcmlcm_ylcmz
89 78 88 eqtrd yFinyzYYFinyYYFinlcm_Yy=lcm_Ylcmlcm_ylcm_Yylcmz=lcm_Ylcmlcm_ylcmz
90 73 89 eqtrd yFinyzYYFinyYYFinlcm_Yy=lcm_Ylcmlcm_ylcm_Yyz=lcm_Ylcmlcm_ylcmz
91 53 adantr yzyFiny
92 simpr yzyFinyFin
93 66 adantr yzyFinz
94 91 92 93 3jca yzyFinyyFinz
95 94 ex yzyFinyyFinz
96 52 95 sylbir yzyFinyyFinz
97 96 adantr yzYYFinyFinyyFinz
98 97 impcom yFinyzYYFinyyFinz
99 lcmfunsn yyFinzlcm_yz=lcm_ylcmz
100 98 99 syl yFinyzYYFinlcm_yz=lcm_ylcmz
101 100 oveq2d yFinyzYYFinlcm_Ylcmlcm_yz=lcm_Ylcmlcm_ylcmz
102 101 eqeq2d yFinyzYYFinlcm_Yyz=lcm_Ylcmlcm_yzlcm_Yyz=lcm_Ylcmlcm_ylcmz
103 102 adantr yFinyzYYFinyYYFinlcm_Yy=lcm_Ylcmlcm_ylcm_Yyz=lcm_Ylcmlcm_yzlcm_Yyz=lcm_Ylcmlcm_ylcmz
104 90 103 mpbird yFinyzYYFinyYYFinlcm_Yy=lcm_Ylcmlcm_ylcm_Yyz=lcm_Ylcmlcm_yz
105 104 exp31 yFinyzYYFinyYYFinlcm_Yy=lcm_Ylcmlcm_ylcm_Yyz=lcm_Ylcmlcm_yz
106 105 com23 yFinyYYFinlcm_Yy=lcm_Ylcmlcm_yyzYYFinlcm_Yyz=lcm_Ylcmlcm_yz
107 11 18 25 32 45 106 findcard2 ZFinZYYFinlcm_YZ=lcm_Ylcmlcm_Z
108 107 expd ZFinZYYFinlcm_YZ=lcm_Ylcmlcm_Z
109 108 impcom ZZFinYYFinlcm_YZ=lcm_Ylcmlcm_Z
110 109 impcom YYFinZZFinlcm_YZ=lcm_Ylcmlcm_Z