Metamath Proof Explorer


Theorem lcoss

Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion lcoss MLModV𝒫BaseMVMLinCoV

Proof

Step Hyp Ref Expression
1 elelpwi vVV𝒫BaseMvBaseM
2 1 expcom V𝒫BaseMvVvBaseM
3 2 adantl MLModV𝒫BaseMvVvBaseM
4 3 imp MLModV𝒫BaseMvVvBaseM
5 eqid BaseM=BaseM
6 eqid ScalarM=ScalarM
7 eqid 0ScalarM=0ScalarM
8 eqid 1ScalarM=1ScalarM
9 equequ1 x=yx=vy=v
10 9 ifbid x=yifx=v1ScalarM0ScalarM=ify=v1ScalarM0ScalarM
11 10 cbvmptv xVifx=v1ScalarM0ScalarM=yVify=v1ScalarM0ScalarM
12 5 6 7 8 11 mptcfsupp MLModV𝒫BaseMvVfinSupp0ScalarMxVifx=v1ScalarM0ScalarM
13 12 3expa MLModV𝒫BaseMvVfinSupp0ScalarMxVifx=v1ScalarM0ScalarM
14 eqid xVifx=v1ScalarM0ScalarM=xVifx=v1ScalarM0ScalarM
15 5 6 7 8 14 linc1 MLModV𝒫BaseMvVxVifx=v1ScalarM0ScalarMlinCMV=v
16 15 3expa MLModV𝒫BaseMvVxVifx=v1ScalarM0ScalarMlinCMV=v
17 16 eqcomd MLModV𝒫BaseMvVv=xVifx=v1ScalarM0ScalarMlinCMV
18 eqid BaseScalarM=BaseScalarM
19 6 18 8 lmod1cl MLMod1ScalarMBaseScalarM
20 6 18 7 lmod0cl MLMod0ScalarMBaseScalarM
21 19 20 ifcld MLModifx=v1ScalarM0ScalarMBaseScalarM
22 21 ad3antrrr MLModV𝒫BaseMvVxVifx=v1ScalarM0ScalarMBaseScalarM
23 22 fmpttd MLModV𝒫BaseMvVxVifx=v1ScalarM0ScalarM:VBaseScalarM
24 fvex BaseScalarMV
25 simplr MLModV𝒫BaseMvVV𝒫BaseM
26 elmapg BaseScalarMVV𝒫BaseMxVifx=v1ScalarM0ScalarMBaseScalarMVxVifx=v1ScalarM0ScalarM:VBaseScalarM
27 24 25 26 sylancr MLModV𝒫BaseMvVxVifx=v1ScalarM0ScalarMBaseScalarMVxVifx=v1ScalarM0ScalarM:VBaseScalarM
28 23 27 mpbird MLModV𝒫BaseMvVxVifx=v1ScalarM0ScalarMBaseScalarMV
29 breq1 f=xVifx=v1ScalarM0ScalarMfinSupp0ScalarMffinSupp0ScalarMxVifx=v1ScalarM0ScalarM
30 oveq1 f=xVifx=v1ScalarM0ScalarMflinCMV=xVifx=v1ScalarM0ScalarMlinCMV
31 30 eqeq2d f=xVifx=v1ScalarM0ScalarMv=flinCMVv=xVifx=v1ScalarM0ScalarMlinCMV
32 29 31 anbi12d f=xVifx=v1ScalarM0ScalarMfinSupp0ScalarMfv=flinCMVfinSupp0ScalarMxVifx=v1ScalarM0ScalarMv=xVifx=v1ScalarM0ScalarMlinCMV
33 32 adantl MLModV𝒫BaseMvVf=xVifx=v1ScalarM0ScalarMfinSupp0ScalarMfv=flinCMVfinSupp0ScalarMxVifx=v1ScalarM0ScalarMv=xVifx=v1ScalarM0ScalarMlinCMV
34 28 33 rspcedv MLModV𝒫BaseMvVfinSupp0ScalarMxVifx=v1ScalarM0ScalarMv=xVifx=v1ScalarM0ScalarMlinCMVfBaseScalarMVfinSupp0ScalarMfv=flinCMV
35 13 17 34 mp2and MLModV𝒫BaseMvVfBaseScalarMVfinSupp0ScalarMfv=flinCMV
36 5 6 18 lcoval MLModV𝒫BaseMvMLinCoVvBaseMfBaseScalarMVfinSupp0ScalarMfv=flinCMV
37 36 adantr MLModV𝒫BaseMvVvMLinCoVvBaseMfBaseScalarMVfinSupp0ScalarMfv=flinCMV
38 4 35 37 mpbir2and MLModV𝒫BaseMvVvMLinCoV
39 38 ex MLModV𝒫BaseMvVvMLinCoV
40 39 ssrdv MLModV𝒫BaseMVMLinCoV