Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 30-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | lcoss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elelpwi | |
|
2 | 1 | expcom | |
3 | 2 | adantl | |
4 | 3 | imp | |
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | equequ1 | |
|
10 | 9 | ifbid | |
11 | 10 | cbvmptv | |
12 | 5 6 7 8 11 | mptcfsupp | |
13 | 12 | 3expa | |
14 | eqid | |
|
15 | 5 6 7 8 14 | linc1 | |
16 | 15 | 3expa | |
17 | 16 | eqcomd | |
18 | eqid | |
|
19 | 6 18 8 | lmod1cl | |
20 | 6 18 7 | lmod0cl | |
21 | 19 20 | ifcld | |
22 | 21 | ad3antrrr | |
23 | 22 | fmpttd | |
24 | fvex | |
|
25 | simplr | |
|
26 | elmapg | |
|
27 | 24 25 26 | sylancr | |
28 | 23 27 | mpbird | |
29 | breq1 | |
|
30 | oveq1 | |
|
31 | 30 | eqeq2d | |
32 | 29 31 | anbi12d | |
33 | 32 | adantl | |
34 | 28 33 | rspcedv | |
35 | 13 17 34 | mp2and | |
36 | 5 6 18 | lcoval | |
37 | 36 | adantr | |
38 | 4 35 37 | mpbir2and | |
39 | 38 | ex | |
40 | 39 | ssrdv | |