Metamath Proof Explorer


Theorem lcv1

Description: Covering property of a subspace plus an atom. ( chcv1 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcv1.s S=LSubSpW
lcv1.p ˙=LSSumW
lcv1.a A=LSAtomsW
lcv1.c C=LW
lcv1.w φWLVec
lcv1.u φUS
lcv1.q φQA
Assertion lcv1 φ¬QUUCU˙Q

Proof

Step Hyp Ref Expression
1 lcv1.s S=LSubSpW
2 lcv1.p ˙=LSSumW
3 lcv1.a A=LSAtomsW
4 lcv1.c C=LW
5 lcv1.w φWLVec
6 lcv1.u φUS
7 lcv1.q φQA
8 eqid BaseW=BaseW
9 eqid LSpanW=LSpanW
10 eqid 0W=0W
11 8 9 10 3 islsat WLVecQAxBaseW0WQ=LSpanWx
12 5 11 syl φQAxBaseW0WQ=LSpanWx
13 7 12 mpbid φxBaseW0WQ=LSpanWx
14 13 adantr φ¬QUxBaseW0WQ=LSpanWx
15 5 adantr φ¬QUWLVec
16 15 3ad2ant1 φ¬QUxBaseW0WQ=LSpanWxWLVec
17 6 adantr φ¬QUUS
18 17 3ad2ant1 φ¬QUxBaseW0WQ=LSpanWxUS
19 eldifi xBaseW0WxBaseW
20 19 3ad2ant2 φ¬QUxBaseW0WQ=LSpanWxxBaseW
21 simp1r φ¬QUxBaseW0WQ=LSpanWx¬QU
22 simp3 φ¬QUxBaseW0WQ=LSpanWxQ=LSpanWx
23 22 sseq1d φ¬QUxBaseW0WQ=LSpanWxQULSpanWxU
24 21 23 mtbid φ¬QUxBaseW0WQ=LSpanWx¬LSpanWxU
25 8 1 9 2 4 16 18 20 24 lsmcv2 φ¬QUxBaseW0WQ=LSpanWxUCU˙LSpanWx
26 22 oveq2d φ¬QUxBaseW0WQ=LSpanWxU˙Q=U˙LSpanWx
27 25 26 breqtrrd φ¬QUxBaseW0WQ=LSpanWxUCU˙Q
28 27 rexlimdv3a φ¬QUxBaseW0WQ=LSpanWxUCU˙Q
29 14 28 mpd φ¬QUUCU˙Q
30 5 adantr φUCU˙QWLVec
31 6 adantr φUCU˙QUS
32 lveclmod WLVecWLMod
33 5 32 syl φWLMod
34 1 3 33 7 lsatlssel φQS
35 1 2 lsmcl WLModUSQSU˙QS
36 33 6 34 35 syl3anc φU˙QS
37 36 adantr φUCU˙QU˙QS
38 simpr φUCU˙QUCU˙Q
39 1 4 30 31 37 38 lcvpss φUCU˙QUU˙Q
40 1 lsssssubg WLModSSubGrpW
41 33 40 syl φSSubGrpW
42 41 6 sseldd φUSubGrpW
43 41 34 sseldd φQSubGrpW
44 2 42 43 lssnle φ¬QUUU˙Q
45 44 adantr φUCU˙Q¬QUUU˙Q
46 39 45 mpbird φUCU˙Q¬QU
47 29 46 impbida φ¬QUUCU˙Q