Metamath Proof Explorer


Theorem lfl0f

Description: The zero function is a functional. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lfl0f.d D=ScalarW
lfl0f.o 0˙=0D
lfl0f.v V=BaseW
lfl0f.f F=LFnlW
Assertion lfl0f WLModV×0˙F

Proof

Step Hyp Ref Expression
1 lfl0f.d D=ScalarW
2 lfl0f.o 0˙=0D
3 lfl0f.v V=BaseW
4 lfl0f.f F=LFnlW
5 2 fvexi 0˙V
6 5 fconst V×0˙:V0˙
7 eqid BaseD=BaseD
8 1 7 2 lmod0cl WLMod0˙BaseD
9 8 snssd WLMod0˙BaseD
10 fss V×0˙:V0˙0˙BaseDV×0˙:VBaseD
11 6 9 10 sylancr WLModV×0˙:VBaseD
12 1 lmodring WLModDRing
13 12 ad2antrr WLModrBaseDxVyVDRing
14 simplrl WLModrBaseDxVyVrBaseD
15 eqid D=D
16 7 15 2 ringrz DRingrBaseDrD0˙=0˙
17 13 14 16 syl2anc WLModrBaseDxVyVrD0˙=0˙
18 17 oveq1d WLModrBaseDxVyVrD0˙+D0˙=0˙+D0˙
19 ringgrp DRingDGrp
20 13 19 syl WLModrBaseDxVyVDGrp
21 7 2 grpidcl DGrp0˙BaseD
22 eqid +D=+D
23 7 22 2 grplid DGrp0˙BaseD0˙+D0˙=0˙
24 20 21 23 syl2anc2 WLModrBaseDxVyV0˙+D0˙=0˙
25 18 24 eqtrd WLModrBaseDxVyVrD0˙+D0˙=0˙
26 simplrr WLModrBaseDxVyVxV
27 5 fvconst2 xVV×0˙x=0˙
28 26 27 syl WLModrBaseDxVyVV×0˙x=0˙
29 28 oveq2d WLModrBaseDxVyVrDV×0˙x=rD0˙
30 5 fvconst2 yVV×0˙y=0˙
31 30 adantl WLModrBaseDxVyVV×0˙y=0˙
32 29 31 oveq12d WLModrBaseDxVyVrDV×0˙x+DV×0˙y=rD0˙+D0˙
33 simpll WLModrBaseDxVyVWLMod
34 eqid W=W
35 3 1 34 7 lmodvscl WLModrBaseDxVrWxV
36 33 14 26 35 syl3anc WLModrBaseDxVyVrWxV
37 simpr WLModrBaseDxVyVyV
38 eqid +W=+W
39 3 38 lmodvacl WLModrWxVyVrWx+WyV
40 33 36 37 39 syl3anc WLModrBaseDxVyVrWx+WyV
41 5 fvconst2 rWx+WyVV×0˙rWx+Wy=0˙
42 40 41 syl WLModrBaseDxVyVV×0˙rWx+Wy=0˙
43 25 32 42 3eqtr4rd WLModrBaseDxVyVV×0˙rWx+Wy=rDV×0˙x+DV×0˙y
44 43 ralrimiva WLModrBaseDxVyVV×0˙rWx+Wy=rDV×0˙x+DV×0˙y
45 44 ralrimivva WLModrBaseDxVyVV×0˙rWx+Wy=rDV×0˙x+DV×0˙y
46 3 38 1 34 7 22 15 4 islfl WLModV×0˙FV×0˙:VBaseDrBaseDxVyVV×0˙rWx+Wy=rDV×0˙x+DV×0˙y
47 11 45 46 mpbir2and WLModV×0˙F