| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfl1dim.v |
|
| 2 |
|
lfl1dim.d |
|
| 3 |
|
lfl1dim.f |
|
| 4 |
|
lfl1dim.l |
|
| 5 |
|
lfl1dim.k |
|
| 6 |
|
lfl1dim.t |
|
| 7 |
|
lfl1dim.w |
|
| 8 |
|
lfl1dim.g |
|
| 9 |
|
lveclmod |
|
| 10 |
7 9
|
syl |
|
| 11 |
|
eqid |
|
| 12 |
2 5 11
|
lmod0cl |
|
| 13 |
10 12
|
syl |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
|
simpr |
|
| 16 |
10
|
ad2antrr |
|
| 17 |
8
|
ad2antrr |
|
| 18 |
1 2 3 5 6 11 16 17
|
lfl0sc |
|
| 19 |
15 18
|
eqtr4d |
|
| 20 |
|
sneq |
|
| 21 |
20
|
xpeq2d |
|
| 22 |
21
|
oveq2d |
|
| 23 |
22
|
rspceeqv |
|
| 24 |
14 19 23
|
syl2anc |
|
| 25 |
24
|
a1d |
|
| 26 |
13
|
ad3antrrr |
|
| 27 |
10
|
ad3antrrr |
|
| 28 |
|
simpllr |
|
| 29 |
1 3 4 27 28
|
lkrssv |
|
| 30 |
10
|
adantr |
|
| 31 |
8
|
adantr |
|
| 32 |
2 11 1 3 4
|
lkr0f |
|
| 33 |
30 31 32
|
syl2anc |
|
| 34 |
33
|
biimpar |
|
| 35 |
34
|
sseq1d |
|
| 36 |
35
|
biimpa |
|
| 37 |
29 36
|
eqssd |
|
| 38 |
2 11 1 3 4
|
lkr0f |
|
| 39 |
27 28 38
|
syl2anc |
|
| 40 |
37 39
|
mpbid |
|
| 41 |
8
|
ad3antrrr |
|
| 42 |
1 2 3 5 6 11 27 41
|
lfl0sc |
|
| 43 |
40 42
|
eqtr4d |
|
| 44 |
26 43 23
|
syl2anc |
|
| 45 |
44
|
ex |
|
| 46 |
|
eqid |
|
| 47 |
7
|
ad2antrr |
|
| 48 |
8
|
ad2antrr |
|
| 49 |
|
simprr |
|
| 50 |
1 2 11 46 3 4
|
lkrshp |
|
| 51 |
47 48 49 50
|
syl3anc |
|
| 52 |
|
simplr |
|
| 53 |
|
simprl |
|
| 54 |
1 2 11 46 3 4
|
lkrshp |
|
| 55 |
47 52 53 54
|
syl3anc |
|
| 56 |
46 47 51 55
|
lshpcmp |
|
| 57 |
7
|
ad3antrrr |
|
| 58 |
8
|
ad3antrrr |
|
| 59 |
|
simpllr |
|
| 60 |
|
simpr |
|
| 61 |
2 5 6 1 3 4
|
eqlkr2 |
|
| 62 |
57 58 59 60 61
|
syl121anc |
|
| 63 |
62
|
ex |
|
| 64 |
56 63
|
sylbid |
|
| 65 |
25 45 64
|
pm2.61da2ne |
|
| 66 |
7
|
ad2antrr |
|
| 67 |
8
|
ad2antrr |
|
| 68 |
|
simpr |
|
| 69 |
1 2 5 6 3 4 66 67 68
|
lkrscss |
|
| 70 |
69
|
ex |
|
| 71 |
|
fveq2 |
|
| 72 |
71
|
sseq2d |
|
| 73 |
72
|
biimprcd |
|
| 74 |
70 73
|
syl6 |
|
| 75 |
74
|
rexlimdv |
|
| 76 |
65 75
|
impbid |
|
| 77 |
76
|
rabbidva |
|