Metamath Proof Explorer


Theorem lfl1dim2N

Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim may be more compatible with lspsn . (Contributed by NM, 24-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lfl1dim.v V=BaseW
lfl1dim.d D=ScalarW
lfl1dim.f F=LFnlW
lfl1dim.l L=LKerW
lfl1dim.k K=BaseD
lfl1dim.t ·˙=D
lfl1dim.w φWLVec
lfl1dim.g φGF
Assertion lfl1dim2N φgF|LGLg=gF|kKg=G·˙fV×k

Proof

Step Hyp Ref Expression
1 lfl1dim.v V=BaseW
2 lfl1dim.d D=ScalarW
3 lfl1dim.f F=LFnlW
4 lfl1dim.l L=LKerW
5 lfl1dim.k K=BaseD
6 lfl1dim.t ·˙=D
7 lfl1dim.w φWLVec
8 lfl1dim.g φGF
9 lveclmod WLVecWLMod
10 7 9 syl φWLMod
11 eqid 0D=0D
12 2 5 11 lmod0cl WLMod0DK
13 10 12 syl φ0DK
14 13 ad2antrr φgFg=V×0D0DK
15 simpr φgFg=V×0Dg=V×0D
16 10 ad2antrr φgFg=V×0DWLMod
17 8 ad2antrr φgFg=V×0DGF
18 1 2 3 5 6 11 16 17 lfl0sc φgFg=V×0DG·˙fV×0D=V×0D
19 15 18 eqtr4d φgFg=V×0Dg=G·˙fV×0D
20 sneq k=0Dk=0D
21 20 xpeq2d k=0DV×k=V×0D
22 21 oveq2d k=0DG·˙fV×k=G·˙fV×0D
23 22 rspceeqv 0DKg=G·˙fV×0DkKg=G·˙fV×k
24 14 19 23 syl2anc φgFg=V×0DkKg=G·˙fV×k
25 24 a1d φgFg=V×0DLGLgkKg=G·˙fV×k
26 13 ad3antrrr φgFG=V×0DLGLg0DK
27 10 ad3antrrr φgFG=V×0DLGLgWLMod
28 simpllr φgFG=V×0DLGLggF
29 1 3 4 27 28 lkrssv φgFG=V×0DLGLgLgV
30 10 adantr φgFWLMod
31 8 adantr φgFGF
32 2 11 1 3 4 lkr0f WLModGFLG=VG=V×0D
33 30 31 32 syl2anc φgFLG=VG=V×0D
34 33 biimpar φgFG=V×0DLG=V
35 34 sseq1d φgFG=V×0DLGLgVLg
36 35 biimpa φgFG=V×0DLGLgVLg
37 29 36 eqssd φgFG=V×0DLGLgLg=V
38 2 11 1 3 4 lkr0f WLModgFLg=Vg=V×0D
39 27 28 38 syl2anc φgFG=V×0DLGLgLg=Vg=V×0D
40 37 39 mpbid φgFG=V×0DLGLgg=V×0D
41 8 ad3antrrr φgFG=V×0DLGLgGF
42 1 2 3 5 6 11 27 41 lfl0sc φgFG=V×0DLGLgG·˙fV×0D=V×0D
43 40 42 eqtr4d φgFG=V×0DLGLgg=G·˙fV×0D
44 26 43 23 syl2anc φgFG=V×0DLGLgkKg=G·˙fV×k
45 44 ex φgFG=V×0DLGLgkKg=G·˙fV×k
46 eqid LSHypW=LSHypW
47 7 ad2antrr φgFgV×0DGV×0DWLVec
48 8 ad2antrr φgFgV×0DGV×0DGF
49 simprr φgFgV×0DGV×0DGV×0D
50 1 2 11 46 3 4 lkrshp WLVecGFGV×0DLGLSHypW
51 47 48 49 50 syl3anc φgFgV×0DGV×0DLGLSHypW
52 simplr φgFgV×0DGV×0DgF
53 simprl φgFgV×0DGV×0DgV×0D
54 1 2 11 46 3 4 lkrshp WLVecgFgV×0DLgLSHypW
55 47 52 53 54 syl3anc φgFgV×0DGV×0DLgLSHypW
56 46 47 51 55 lshpcmp φgFgV×0DGV×0DLGLgLG=Lg
57 7 ad3antrrr φgFgV×0DGV×0DLG=LgWLVec
58 8 ad3antrrr φgFgV×0DGV×0DLG=LgGF
59 simpllr φgFgV×0DGV×0DLG=LggF
60 simpr φgFgV×0DGV×0DLG=LgLG=Lg
61 2 5 6 1 3 4 eqlkr2 WLVecGFgFLG=LgkKg=G·˙fV×k
62 57 58 59 60 61 syl121anc φgFgV×0DGV×0DLG=LgkKg=G·˙fV×k
63 62 ex φgFgV×0DGV×0DLG=LgkKg=G·˙fV×k
64 56 63 sylbid φgFgV×0DGV×0DLGLgkKg=G·˙fV×k
65 25 45 64 pm2.61da2ne φgFLGLgkKg=G·˙fV×k
66 7 ad2antrr φgFkKWLVec
67 8 ad2antrr φgFkKGF
68 simpr φgFkKkK
69 1 2 5 6 3 4 66 67 68 lkrscss φgFkKLGLG·˙fV×k
70 69 ex φgFkKLGLG·˙fV×k
71 fveq2 g=G·˙fV×kLg=LG·˙fV×k
72 71 sseq2d g=G·˙fV×kLGLgLGLG·˙fV×k
73 72 biimprcd LGLG·˙fV×kg=G·˙fV×kLGLg
74 70 73 syl6 φgFkKg=G·˙fV×kLGLg
75 74 rexlimdv φgFkKg=G·˙fV×kLGLg
76 65 75 impbid φgFLGLgkKg=G·˙fV×k
77 76 rabbidva φgF|LGLg=gF|kKg=G·˙fV×k