Metamath Proof Explorer


Theorem lgsdchrval

Description: The Legendre symbol function X ( m ) = ( m /L N ) , where N is an odd positive number, is a Dirichlet character modulo N . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses lgsdchr.g G=DChrN
lgsdchr.z Z=/N
lgsdchr.d D=BaseG
lgsdchr.b B=BaseZ
lgsdchr.l L=ℤRHomZ
lgsdchr.x X=yBιh|my=Lmh=m/LN
Assertion lgsdchrval N¬2NAXLA=A/LN

Proof

Step Hyp Ref Expression
1 lgsdchr.g G=DChrN
2 lgsdchr.z Z=/N
3 lgsdchr.d D=BaseG
4 lgsdchr.b B=BaseZ
5 lgsdchr.l L=ℤRHomZ
6 lgsdchr.x X=yBιh|my=Lmh=m/LN
7 nnnn0 NN0
8 7 adantr N¬2NN0
9 2 4 5 znzrhfo N0L:ontoB
10 fof L:ontoBL:B
11 8 9 10 3syl N¬2NL:B
12 11 ffvelcdmda N¬2NALAB
13 eqeq1 y=LAy=LmLA=Lm
14 13 anbi1d y=LAy=Lmh=m/LNLA=Lmh=m/LN
15 14 rexbidv y=LAmy=Lmh=m/LNmLA=Lmh=m/LN
16 15 iotabidv y=LAιh|my=Lmh=m/LN=ιh|mLA=Lmh=m/LN
17 iotaex ιh|my=Lmh=m/LNV
18 16 6 17 fvmpt3i LABXLA=ιh|mLA=Lmh=m/LN
19 12 18 syl N¬2NAXLA=ιh|mLA=Lmh=m/LN
20 ovex A/LNV
21 simprr N¬2NAmLA=LmLA=Lm
22 simplll N¬2NAmLA=LmN
23 22 7 syl N¬2NAmLA=LmN0
24 simplr N¬2NAmLA=LmA
25 simprl N¬2NAmLA=Lmm
26 2 5 zndvds N0AmLA=LmNAm
27 23 24 25 26 syl3anc N¬2NAmLA=LmLA=LmNAm
28 21 27 mpbid N¬2NAmLA=LmNAm
29 moddvds NAmAmodN=mmodNNAm
30 22 24 25 29 syl3anc N¬2NAmLA=LmAmodN=mmodNNAm
31 28 30 mpbird N¬2NAmLA=LmAmodN=mmodN
32 31 oveq1d N¬2NAmLA=LmAmodN/LN=mmodN/LN
33 simpllr N¬2NAmLA=Lm¬2N
34 lgsmod AN¬2NAmodN/LN=A/LN
35 24 22 33 34 syl3anc N¬2NAmLA=LmAmodN/LN=A/LN
36 lgsmod mN¬2NmmodN/LN=m/LN
37 25 22 33 36 syl3anc N¬2NAmLA=LmmmodN/LN=m/LN
38 32 35 37 3eqtr3d N¬2NAmLA=LmA/LN=m/LN
39 38 eqeq2d N¬2NAmLA=Lmh=A/LNh=m/LN
40 39 biimprd N¬2NAmLA=Lmh=m/LNh=A/LN
41 40 anassrs N¬2NAmLA=Lmh=m/LNh=A/LN
42 41 expimpd N¬2NAmLA=Lmh=m/LNh=A/LN
43 42 rexlimdva N¬2NAmLA=Lmh=m/LNh=A/LN
44 fveq2 m=ALm=LA
45 44 eqcomd m=ALA=Lm
46 45 biantrurd m=Ah=m/LNLA=Lmh=m/LN
47 oveq1 m=Am/LN=A/LN
48 47 eqeq2d m=Ah=m/LNh=A/LN
49 46 48 bitr3d m=ALA=Lmh=m/LNh=A/LN
50 49 rspcev Ah=A/LNmLA=Lmh=m/LN
51 50 ex Ah=A/LNmLA=Lmh=m/LN
52 51 adantl N¬2NAh=A/LNmLA=Lmh=m/LN
53 43 52 impbid N¬2NAmLA=Lmh=m/LNh=A/LN
54 53 adantr N¬2NAA/LNVmLA=Lmh=m/LNh=A/LN
55 54 iota5 N¬2NAA/LNVιh|mLA=Lmh=m/LN=A/LN
56 20 55 mpan2 N¬2NAιh|mLA=Lmh=m/LN=A/LN
57 19 56 eqtrd N¬2NAXLA=A/LN