Description: The Legendre symbol function X ( m ) = ( m /L N ) , where N is an odd positive number, is a Dirichlet character modulo N . (Contributed by Mario Carneiro, 28-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lgsdchr.g | |
|
lgsdchr.z | |
||
lgsdchr.d | |
||
lgsdchr.b | |
||
lgsdchr.l | |
||
lgsdchr.x | |
||
Assertion | lgsdchrval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsdchr.g | |
|
2 | lgsdchr.z | |
|
3 | lgsdchr.d | |
|
4 | lgsdchr.b | |
|
5 | lgsdchr.l | |
|
6 | lgsdchr.x | |
|
7 | nnnn0 | |
|
8 | 7 | adantr | |
9 | 2 4 5 | znzrhfo | |
10 | fof | |
|
11 | 8 9 10 | 3syl | |
12 | 11 | ffvelcdmda | |
13 | eqeq1 | |
|
14 | 13 | anbi1d | |
15 | 14 | rexbidv | |
16 | 15 | iotabidv | |
17 | iotaex | |
|
18 | 16 6 17 | fvmpt3i | |
19 | 12 18 | syl | |
20 | ovex | |
|
21 | simprr | |
|
22 | simplll | |
|
23 | 22 7 | syl | |
24 | simplr | |
|
25 | simprl | |
|
26 | 2 5 | zndvds | |
27 | 23 24 25 26 | syl3anc | |
28 | 21 27 | mpbid | |
29 | moddvds | |
|
30 | 22 24 25 29 | syl3anc | |
31 | 28 30 | mpbird | |
32 | 31 | oveq1d | |
33 | simpllr | |
|
34 | lgsmod | |
|
35 | 24 22 33 34 | syl3anc | |
36 | lgsmod | |
|
37 | 25 22 33 36 | syl3anc | |
38 | 32 35 37 | 3eqtr3d | |
39 | 38 | eqeq2d | |
40 | 39 | biimprd | |
41 | 40 | anassrs | |
42 | 41 | expimpd | |
43 | 42 | rexlimdva | |
44 | fveq2 | |
|
45 | 44 | eqcomd | |
46 | 45 | biantrurd | |
47 | oveq1 | |
|
48 | 47 | eqeq2d | |
49 | 46 48 | bitr3d | |
50 | 49 | rspcev | |
51 | 50 | ex | |
52 | 51 | adantl | |
53 | 43 52 | impbid | |
54 | 53 | adantr | |
55 | 54 | iota5 | |
56 | 20 55 | mpan2 | |
57 | 19 56 | eqtrd | |