| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limccl.f |
|
| 2 |
|
limccl.a |
|
| 3 |
|
limccl.b |
|
| 4 |
|
ellimc2.k |
|
| 5 |
|
limcnlp.n |
|
| 6 |
1 2 3 4
|
ellimc2 |
|
| 7 |
4
|
cnfldtop |
|
| 8 |
2
|
adantr |
|
| 9 |
8
|
ssdifssd |
|
| 10 |
4
|
cnfldtopon |
|
| 11 |
10
|
toponunii |
|
| 12 |
11
|
clscld |
|
| 13 |
7 9 12
|
sylancr |
|
| 14 |
11
|
cldopn |
|
| 15 |
13 14
|
syl |
|
| 16 |
11
|
islp |
|
| 17 |
7 2 16
|
sylancr |
|
| 18 |
5 17
|
mtbid |
|
| 19 |
3 18
|
eldifd |
|
| 20 |
19
|
adantr |
|
| 21 |
|
difin2 |
|
| 22 |
9 21
|
syl |
|
| 23 |
11
|
sscls |
|
| 24 |
7 9 23
|
sylancr |
|
| 25 |
|
ssdif0 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
22 26
|
eqtr3d |
|
| 28 |
27
|
imaeq2d |
|
| 29 |
|
ima0 |
|
| 30 |
28 29
|
eqtrdi |
|
| 31 |
|
0ss |
|
| 32 |
30 31
|
eqsstrdi |
|
| 33 |
|
eleq2 |
|
| 34 |
|
ineq1 |
|
| 35 |
34
|
imaeq2d |
|
| 36 |
35
|
sseq1d |
|
| 37 |
33 36
|
anbi12d |
|
| 38 |
37
|
rspcev |
|
| 39 |
15 20 32 38
|
syl12anc |
|
| 40 |
39
|
a1d |
|
| 41 |
40
|
ralrimivw |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
pm4.71d |
|
| 44 |
6 43
|
bitr4d |
|
| 45 |
44
|
eqrdv |
|