Description: If B is not a limit point of the domain of the function F , then every point is a limit of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limccl.f | |
|
limccl.a | |
||
limccl.b | |
||
ellimc2.k | |
||
limcnlp.n | |
||
Assertion | limcnlp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limccl.f | |
|
2 | limccl.a | |
|
3 | limccl.b | |
|
4 | ellimc2.k | |
|
5 | limcnlp.n | |
|
6 | 1 2 3 4 | ellimc2 | |
7 | 4 | cnfldtop | |
8 | 2 | adantr | |
9 | 8 | ssdifssd | |
10 | 4 | cnfldtopon | |
11 | 10 | toponunii | |
12 | 11 | clscld | |
13 | 7 9 12 | sylancr | |
14 | 11 | cldopn | |
15 | 13 14 | syl | |
16 | 11 | islp | |
17 | 7 2 16 | sylancr | |
18 | 5 17 | mtbid | |
19 | 3 18 | eldifd | |
20 | 19 | adantr | |
21 | difin2 | |
|
22 | 9 21 | syl | |
23 | 11 | sscls | |
24 | 7 9 23 | sylancr | |
25 | ssdif0 | |
|
26 | 24 25 | sylib | |
27 | 22 26 | eqtr3d | |
28 | 27 | imaeq2d | |
29 | ima0 | |
|
30 | 28 29 | eqtrdi | |
31 | 0ss | |
|
32 | 30 31 | eqsstrdi | |
33 | eleq2 | |
|
34 | ineq1 | |
|
35 | 34 | imaeq2d | |
36 | 35 | sseq1d | |
37 | 33 36 | anbi12d | |
38 | 37 | rspcev | |
39 | 15 20 32 38 | syl12anc | |
40 | 39 | a1d | |
41 | 40 | ralrimivw | |
42 | 41 | ex | |
43 | 42 | pm4.71d | |
44 | 6 43 | bitr4d | |
45 | 44 | eqrdv | |