Metamath Proof Explorer


Theorem lineelsb2

Description: If S lies on P Q , then P Q = P S . Theorem 6.16 of Schwabhauser p. 45. (Contributed by Scott Fenton, 27-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion lineelsb2 NP𝔼NQ𝔼NPQS𝔼NPSSPLineQPLineQ=PLineS

Proof

Step Hyp Ref Expression
1 simpl1 NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NN
2 simpl3l NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NS𝔼N
3 simpl21 NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NP𝔼N
4 simpl22 NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQ𝔼N
5 brcolinear NS𝔼NP𝔼NQ𝔼NSColinearPQSBtwnPQPBtwnQSQBtwnSP
6 1 2 3 4 5 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSColinearPQSBtwnPQPBtwnQSQBtwnSP
7 6 biimpa NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSColinearPQSBtwnPQPBtwnQSQBtwnSP
8 simpr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼Nx𝔼N
9 brcolinear Nx𝔼NP𝔼NQ𝔼NxColinearPQxBtwnPQPBtwnQxQBtwnxP
10 1 8 3 4 9 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NxColinearPQxBtwnPQPBtwnQxQBtwnxP
11 10 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxColinearPQxBtwnPQPBtwnQxQBtwnxP
12 btwnconn3 NP𝔼NS𝔼Nx𝔼NQ𝔼NSBtwnPQxBtwnPQSBtwnPxxBtwnPS
13 1 3 2 8 4 12 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPQSBtwnPxxBtwnPS
14 13 imp NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPQSBtwnPxxBtwnPS
15 btwncolinear3 NP𝔼Nx𝔼NS𝔼NSBtwnPxxColinearPS
16 1 3 8 2 15 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPxxColinearPS
17 btwncolinear5 NP𝔼NS𝔼Nx𝔼NxBtwnPSxColinearPS
18 1 3 2 8 17 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NxBtwnPSxColinearPS
19 16 18 jaod NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPxxBtwnPSxColinearPS
20 19 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPQSBtwnPxxBtwnPSxColinearPS
21 14 20 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPQxColinearPS
22 21 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPQxColinearPS
23 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnQxSBtwnPQ
24 1 2 3 4 23 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnQxSBtwnQP
25 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnQxPBtwnQx
26 1 4 2 3 8 24 25 btwnexch3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnQxPBtwnSx
27 btwncolinear4 NS𝔼Nx𝔼NP𝔼NPBtwnSxxColinearPS
28 1 2 8 3 27 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnSxxColinearPS
29 28 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnQxPBtwnSxxColinearPS
30 26 29 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnQxxColinearPS
31 30 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnQxxColinearPS
32 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQQBtwnxPSBtwnPQ
33 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQQBtwnxPQBtwnxP
34 1 4 8 3 33 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQQBtwnxPQBtwnPx
35 1 3 2 4 8 32 34 btwnexchand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQQBtwnxPSBtwnPx
36 16 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQQBtwnxPSBtwnPxxColinearPS
37 35 36 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQQBtwnxPxColinearPS
38 37 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQQBtwnxPxColinearPS
39 22 31 38 3jaod NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPQPBtwnQxQBtwnxPxColinearPS
40 11 39 sylbid NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxColinearPQxColinearPS
41 brcolinear Nx𝔼NP𝔼NS𝔼NxColinearPSxBtwnPSPBtwnSxSBtwnxP
42 1 8 3 2 41 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NxColinearPSxBtwnPSPBtwnSxSBtwnxP
43 42 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxColinearPSxBtwnPSPBtwnSxSBtwnxP
44 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPSxBtwnPS
45 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPSSBtwnPQ
46 1 3 8 2 4 44 45 btwnexchand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPSxBtwnPQ
47 btwncolinear5 NP𝔼NQ𝔼Nx𝔼NxBtwnPQxColinearPQ
48 1 3 4 8 47 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NxBtwnPQxColinearPQ
49 48 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPSxBtwnPQxColinearPQ
50 46 49 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPSxColinearPQ
51 50 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPSxColinearPQ
52 simpl3r NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPS
53 52 necomd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSP
54 53 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnSxSP
55 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnSxSBtwnPQ
56 1 2 3 4 55 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnSxSBtwnQP
57 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnSxPBtwnSx
58 btwnouttr2 NQ𝔼NS𝔼NP𝔼Nx𝔼NSPSBtwnQPPBtwnSxPBtwnQx
59 1 4 2 3 8 58 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSPSBtwnQPPBtwnSxPBtwnQx
60 59 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnSxSPSBtwnQPPBtwnSxPBtwnQx
61 54 56 57 60 mp3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnSxPBtwnQx
62 btwncolinear4 NQ𝔼Nx𝔼NP𝔼NPBtwnQxxColinearPQ
63 1 4 8 3 62 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQxxColinearPQ
64 63 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnSxPBtwnQxxColinearPQ
65 61 64 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnSxxColinearPQ
66 65 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnSxxColinearPQ
67 52 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQSBtwnxPPS
68 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQSBtwnxPSBtwnPQ
69 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQSBtwnxPSBtwnxP
70 1 2 8 3 69 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQSBtwnxPSBtwnPx
71 btwnconn1 NP𝔼NS𝔼NQ𝔼Nx𝔼NPSSBtwnPQSBtwnPxQBtwnPxxBtwnPQ
72 1 3 2 4 8 71 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPSSBtwnPQSBtwnPxQBtwnPxxBtwnPQ
73 72 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQSBtwnxPPSSBtwnPQSBtwnPxQBtwnPxxBtwnPQ
74 67 68 70 73 mp3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQSBtwnxPQBtwnPxxBtwnPQ
75 btwncolinear3 NP𝔼Nx𝔼NQ𝔼NQBtwnPxxColinearPQ
76 1 3 8 4 75 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnPxxColinearPQ
77 76 48 jaod NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnPxxBtwnPQxColinearPQ
78 77 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQSBtwnxPQBtwnPxxBtwnPQxColinearPQ
79 74 78 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQSBtwnxPxColinearPQ
80 79 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQSBtwnxPxColinearPQ
81 51 66 80 3jaod NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxBtwnPSPBtwnSxSBtwnxPxColinearPQ
82 43 81 sylbid NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxColinearPSxColinearPQ
83 40 82 impbid NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQxColinearPQxColinearPS
84 10 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxColinearPQxBtwnPQPBtwnQxQBtwnxP
85 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPQxBtwnPQ
86 1 8 3 4 85 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPQxBtwnQP
87 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPQPBtwnQS
88 1 4 8 3 2 86 87 btwnexch3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPQPBtwnxS
89 btwncolinear2 Nx𝔼NS𝔼NP𝔼NPBtwnxSxColinearPS
90 1 8 2 3 89 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnxSxColinearPS
91 90 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPQPBtwnxSxColinearPS
92 88 91 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPQxColinearPS
93 92 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPQxColinearPS
94 simpl23 NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPQ
95 94 necomd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQP
96 95 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnQxQP
97 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnQxPBtwnQS
98 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnQxPBtwnQx
99 btwnconn2 NQ𝔼NP𝔼NS𝔼Nx𝔼NQPPBtwnQSPBtwnQxSBtwnPxxBtwnPS
100 1 4 3 2 8 99 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQPPBtwnQSPBtwnQxSBtwnPxxBtwnPS
101 100 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnQxQPPBtwnQSPBtwnQxSBtwnPxxBtwnPS
102 96 97 98 101 mp3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnQxSBtwnPxxBtwnPS
103 19 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnQxSBtwnPxxBtwnPSxColinearPS
104 102 103 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnQxxColinearPS
105 104 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnQxxColinearPS
106 94 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPPQ
107 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPPBtwnQS
108 1 3 4 2 107 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPPBtwnSQ
109 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPQBtwnxP
110 1 4 8 3 109 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPQBtwnPx
111 btwnouttr NS𝔼NP𝔼NQ𝔼Nx𝔼NPQPBtwnSQQBtwnPxPBtwnSx
112 1 2 3 4 8 111 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPQPBtwnSQQBtwnPxPBtwnSx
113 112 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPPQPBtwnSQQBtwnPxPBtwnSx
114 106 108 110 113 mp3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPPBtwnSx
115 28 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPPBtwnSxxColinearPS
116 114 115 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPxColinearPS
117 116 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSQBtwnxPxColinearPS
118 93 105 117 3jaod NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPQPBtwnQxQBtwnxPxColinearPS
119 84 118 sylbid NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxColinearPQxColinearPS
120 42 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxColinearPSxBtwnPSPBtwnSxSBtwnxP
121 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPSxBtwnPS
122 1 8 3 2 121 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPSxBtwnSP
123 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPSPBtwnQS
124 1 3 4 2 123 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPSPBtwnSQ
125 1 2 8 3 4 122 124 btwnexch3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPSPBtwnxQ
126 btwncolinear2 Nx𝔼NQ𝔼NP𝔼NPBtwnxQxColinearPQ
127 1 8 4 3 126 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnxQxColinearPQ
128 127 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPSPBtwnxQxColinearPQ
129 125 128 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPSxColinearPQ
130 129 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPSxColinearPQ
131 53 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnSxSP
132 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnSxPBtwnQS
133 1 3 4 2 132 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnSxPBtwnSQ
134 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnSxPBtwnSx
135 btwnconn2 NS𝔼NP𝔼NQ𝔼Nx𝔼NSPPBtwnSQPBtwnSxQBtwnPxxBtwnPQ
136 1 2 3 4 8 135 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSPPBtwnSQPBtwnSxQBtwnPxxBtwnPQ
137 136 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnSxSPPBtwnSQPBtwnSxQBtwnPxxBtwnPQ
138 131 133 134 137 mp3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnSxQBtwnPxxBtwnPQ
139 77 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnSxQBtwnPxxBtwnPQxColinearPQ
140 138 139 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnSxxColinearPQ
141 140 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSPBtwnSxxColinearPQ
142 52 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSSBtwnxPPS
143 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSSBtwnxPPBtwnQS
144 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSSBtwnxPSBtwnxP
145 1 2 8 3 144 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSSBtwnxPSBtwnPx
146 btwnouttr NQ𝔼NP𝔼NS𝔼Nx𝔼NPSPBtwnQSSBtwnPxPBtwnQx
147 1 4 3 2 8 146 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPSPBtwnQSSBtwnPxPBtwnQx
148 147 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSSBtwnxPPSPBtwnQSSBtwnPxPBtwnQx
149 142 143 145 148 mp3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSSBtwnxPPBtwnQx
150 63 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSSBtwnxPPBtwnQxxColinearPQ
151 149 150 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSSBtwnxPxColinearPQ
152 151 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSSBtwnxPxColinearPQ
153 130 141 152 3jaod NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxBtwnPSPBtwnSxSBtwnxPxColinearPQ
154 120 153 sylbid NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxColinearPSxColinearPQ
155 119 154 impbid NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPBtwnQSxColinearPQxColinearPS
156 10 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxColinearPQxBtwnPQPBtwnQxQBtwnxP
157 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPQxBtwnPQ
158 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPQQBtwnSP
159 1 4 2 3 158 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPQQBtwnPS
160 1 3 8 4 2 157 159 btwnexchand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPQxBtwnPS
161 18 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPQxBtwnPSxColinearPS
162 160 161 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPQxColinearPS
163 162 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPQxColinearPS
164 95 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnQxQP
165 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnQxQBtwnSP
166 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnQxPBtwnQx
167 btwnouttr2 NS𝔼NQ𝔼NP𝔼Nx𝔼NQPQBtwnSPPBtwnQxPBtwnSx
168 1 2 4 3 8 167 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQPQBtwnSPPBtwnQxPBtwnSx
169 168 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnQxQPQBtwnSPPBtwnQxPBtwnSx
170 164 165 166 169 mp3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnQxPBtwnSx
171 28 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnQxPBtwnSxxColinearPS
172 170 171 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnQxxColinearPS
173 172 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnQxxColinearPS
174 94 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPPQ
175 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPQBtwnSP
176 1 4 2 3 175 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPQBtwnPS
177 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPQBtwnxP
178 1 4 8 3 177 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPQBtwnPx
179 btwnconn1 NP𝔼NQ𝔼NS𝔼Nx𝔼NPQQBtwnPSQBtwnPxSBtwnPxxBtwnPS
180 1 3 4 2 8 179 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NPQQBtwnPSQBtwnPxSBtwnPxxBtwnPS
181 180 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPPQQBtwnPSQBtwnPxSBtwnPxxBtwnPS
182 174 176 178 181 mp3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPSBtwnPxxBtwnPS
183 19 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPSBtwnPxxBtwnPSxColinearPS
184 182 183 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPxColinearPS
185 184 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPQBtwnxPxColinearPS
186 163 173 185 3jaod NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPQPBtwnQxQBtwnxPxColinearPS
187 156 186 sylbid NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxColinearPQxColinearPS
188 42 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxColinearPSxBtwnPSPBtwnSxSBtwnxP
189 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPSQBtwnSP
190 1 4 2 3 189 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPSQBtwnPS
191 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPSxBtwnPS
192 btwnconn3 NP𝔼NQ𝔼Nx𝔼NS𝔼NQBtwnPSxBtwnPSQBtwnPxxBtwnPQ
193 1 3 4 8 2 192 syl122anc NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnPSxBtwnPSQBtwnPxxBtwnPQ
194 193 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPSQBtwnPSxBtwnPSQBtwnPxxBtwnPQ
195 190 191 194 mp2and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPSQBtwnPxxBtwnPQ
196 77 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPSQBtwnPxxBtwnPQxColinearPQ
197 195 196 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPSxColinearPQ
198 197 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPSxColinearPQ
199 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnSxQBtwnSP
200 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnSxPBtwnSx
201 1 2 4 3 8 199 200 btwnexch3and NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnSxPBtwnQx
202 63 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnSxPBtwnQxxColinearPQ
203 201 202 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnSxxColinearPQ
204 203 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPPBtwnSxxColinearPQ
205 simprl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPSBtwnxPQBtwnSP
206 1 4 2 3 205 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPSBtwnxPQBtwnPS
207 simprr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPSBtwnxPSBtwnxP
208 1 2 8 3 207 btwncomand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPSBtwnxPSBtwnPx
209 1 3 4 2 8 206 208 btwnexchand NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPSBtwnxPQBtwnPx
210 76 adantr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPSBtwnxPQBtwnPxxColinearPQ
211 209 210 mpd NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPSBtwnxPxColinearPQ
212 211 expr NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPSBtwnxPxColinearPQ
213 198 204 212 3jaod NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxBtwnPSPBtwnSxSBtwnxPxColinearPQ
214 188 213 sylbid NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxColinearPSxColinearPQ
215 187 214 impbid NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NQBtwnSPxColinearPQxColinearPS
216 83 155 215 3jaodan NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSBtwnPQPBtwnQSQBtwnSPxColinearPQxColinearPS
217 7 216 syldan NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NSColinearPQxColinearPQxColinearPS
218 217 adantrl NP𝔼NQ𝔼NPQS𝔼NPSx𝔼NS𝔼NSColinearPQxColinearPQxColinearPS
219 218 an32s NP𝔼NQ𝔼NPQS𝔼NPSS𝔼NSColinearPQx𝔼NxColinearPQxColinearPS
220 219 rabbidva NP𝔼NQ𝔼NPQS𝔼NPSS𝔼NSColinearPQx𝔼N|xColinearPQ=x𝔼N|xColinearPS
221 220 ex NP𝔼NQ𝔼NPQS𝔼NPSS𝔼NSColinearPQx𝔼N|xColinearPQ=x𝔼N|xColinearPS
222 fvline2 NP𝔼NQ𝔼NPQPLineQ=x𝔼N|xColinearPQ
223 222 3adant3 NP𝔼NQ𝔼NPQS𝔼NPSPLineQ=x𝔼N|xColinearPQ
224 223 eleq2d NP𝔼NQ𝔼NPQS𝔼NPSSPLineQSx𝔼N|xColinearPQ
225 breq1 x=SxColinearPQSColinearPQ
226 225 elrab Sx𝔼N|xColinearPQS𝔼NSColinearPQ
227 224 226 bitrdi NP𝔼NQ𝔼NPQS𝔼NPSSPLineQS𝔼NSColinearPQ
228 simp1 NP𝔼NQ𝔼NPQS𝔼NPSN
229 simp21 NP𝔼NQ𝔼NPQS𝔼NPSP𝔼N
230 simp3l NP𝔼NQ𝔼NPQS𝔼NPSS𝔼N
231 simp3r NP𝔼NQ𝔼NPQS𝔼NPSPS
232 fvline2 NP𝔼NS𝔼NPSPLineS=x𝔼N|xColinearPS
233 228 229 230 231 232 syl13anc NP𝔼NQ𝔼NPQS𝔼NPSPLineS=x𝔼N|xColinearPS
234 223 233 eqeq12d NP𝔼NQ𝔼NPQS𝔼NPSPLineQ=PLineSx𝔼N|xColinearPQ=x𝔼N|xColinearPS
235 221 227 234 3imtr4d NP𝔼NQ𝔼NPQS𝔼NPSSPLineQPLineQ=PLineS