Metamath Proof Explorer


Theorem lkreqN

Description: Proportional functionals have equal kernels. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lkreq.s S=ScalarW
lkreq.r R=BaseS
lkreq.o 0˙=0S
lkreq.f F=LFnlW
lkreq.k K=LKerW
lkreq.d D=LDualW
lkreq.t ·˙=D
lkreq.w φWLVec
lkreq.a φAR0˙
lkreq.h φHF
lkreq.g φG=A·˙H
Assertion lkreqN φKG=KH

Proof

Step Hyp Ref Expression
1 lkreq.s S=ScalarW
2 lkreq.r R=BaseS
3 lkreq.o 0˙=0S
4 lkreq.f F=LFnlW
5 lkreq.k K=LKerW
6 lkreq.d D=LDualW
7 lkreq.t ·˙=D
8 lkreq.w φWLVec
9 lkreq.a φAR0˙
10 lkreq.h φHF
11 lkreq.g φG=A·˙H
12 11 eqeq1d φG=0DA·˙H=0D
13 eqid BaseD=BaseD
14 eqid ScalarD=ScalarD
15 eqid BaseScalarD=BaseScalarD
16 eqid 0ScalarD=0ScalarD
17 eqid 0D=0D
18 6 8 lduallvec φDLVec
19 9 eldifad φAR
20 1 2 6 14 15 8 ldualsbase φBaseScalarD=R
21 19 20 eleqtrrd φABaseScalarD
22 4 6 13 8 10 ldualelvbase φHBaseD
23 13 7 14 15 16 17 18 21 22 lvecvs0or φA·˙H=0DA=0ScalarDH=0D
24 lveclmod WLVecWLMod
25 8 24 syl φWLMod
26 1 3 6 14 16 25 ldual0 φ0ScalarD=0˙
27 26 eqeq2d φA=0ScalarDA=0˙
28 eldifsni AR0˙A0˙
29 9 28 syl φA0˙
30 29 a1d φH0DA0˙
31 30 necon4d φA=0˙H=0D
32 27 31 sylbid φA=0ScalarDH=0D
33 idd φH=0DH=0D
34 32 33 jaod φA=0ScalarDH=0DH=0D
35 23 34 sylbid φA·˙H=0DH=0D
36 12 35 sylbid φG=0DH=0D
37 nne ¬H0DH=0D
38 36 37 syl6ibr φG=0D¬H0D
39 38 con3d φ¬¬H0D¬G=0D
40 39 orrd φ¬H0D¬G=0D
41 ianor ¬H0DG=0D¬H0D¬G=0D
42 40 41 sylibr φ¬H0DG=0D
43 4 1 2 6 7 25 19 10 ldualvscl φA·˙HF
44 11 43 eqeltrd φGF
45 4 5 6 17 8 10 44 lkrpssN φKHKGH0DG=0D
46 df-pss KHKGKHKGKHKG
47 45 46 bitr3di φH0DG=0DKHKGKHKG
48 1 2 4 5 6 7 8 10 19 lkrss φKHKA·˙H
49 11 fveq2d φKG=KA·˙H
50 48 49 sseqtrrd φKHKG
51 50 biantrurd φKHKGKHKGKHKG
52 47 51 bitr4d φH0DG=0DKHKG
53 52 necon2bbid φKH=KG¬H0DG=0D
54 42 53 mpbird φKH=KG
55 54 eqcomd φKG=KH