Metamath Proof Explorer


Theorem logfacbnd3

Description: Show the stronger statement log ( x ! ) = x log x - x + O ( log x ) alluded to in logfacrlim . (Contributed by Mario Carneiro, 20-May-2016)

Ref Expression
Assertion logfacbnd3 A+1AlogA!AlogA1logA+1

Proof

Step Hyp Ref Expression
1 simpl A+1AA+
2 1 rprege0d A+1AA0A
3 flge0nn0 A0AA0
4 2 3 syl A+1AA0
5 4 faccld A+1AA!
6 5 nnrpd A+1AA!+
7 relogcl A!+logA!
8 6 7 syl A+1AlogA!
9 rpre A+A
10 9 adantr A+1AA
11 relogcl A+logA
12 11 adantr A+1AlogA
13 peano2rem logAlogA1
14 12 13 syl A+1AlogA1
15 10 14 remulcld A+1AAlogA1
16 8 15 resubcld A+1AlogA!AlogA1
17 16 recnd A+1AlogA!AlogA1
18 17 abscld A+1AlogA!AlogA1
19 peano2rem logA!AlogA1logA!AlogA11
20 18 19 syl A+1AlogA!AlogA11
21 ax-1cn 1
22 subcl logA!AlogA11logA!-AlogA1-1
23 17 21 22 sylancl A+1AlogA!-AlogA1-1
24 23 abscld A+1AlogA!-AlogA1-1
25 abs1 1=1
26 25 oveq2i logA!AlogA11=logA!AlogA11
27 abs2dif logA!AlogA11logA!AlogA11logA!-AlogA1-1
28 17 21 27 sylancl A+1AlogA!AlogA11logA!-AlogA1-1
29 26 28 eqbrtrrid A+1AlogA!AlogA11logA!-AlogA1-1
30 fveq2 x=Ax=A
31 30 oveq2d x=A1x=1A
32 31 sumeq1d x=An=1xlogn=n=1Alogn
33 id x=Ax=A
34 fveq2 x=Alogx=logA
35 34 oveq1d x=Alogx1=logA1
36 33 35 oveq12d x=Axlogx1=AlogA1
37 32 36 oveq12d x=An=1xlognxlogx1=n=1AlognAlogA1
38 eqid x+n=1xlognxlogx1=x+n=1xlognxlogx1
39 ovex n=1xlognxlogx1V
40 37 38 39 fvmpt3i A+x+n=1xlognxlogx1A=n=1AlognAlogA1
41 40 adantr A+1Ax+n=1xlognxlogx1A=n=1AlognAlogA1
42 logfac A0logA!=n=1Alogn
43 4 42 syl A+1AlogA!=n=1Alogn
44 43 oveq1d A+1AlogA!AlogA1=n=1AlognAlogA1
45 41 44 eqtr4d A+1Ax+n=1xlognxlogx1A=logA!AlogA1
46 1rp 1+
47 fveq2 x=1x=1
48 1z 1
49 flid 11=1
50 48 49 ax-mp 1=1
51 47 50 eqtrdi x=1x=1
52 51 oveq2d x=11x=11
53 52 sumeq1d x=1n=1xlogn=n=11logn
54 0cn 0
55 fveq2 n=1logn=log1
56 log1 log1=0
57 55 56 eqtrdi n=1logn=0
58 57 fsum1 10n=11logn=0
59 48 54 58 mp2an n=11logn=0
60 53 59 eqtrdi x=1n=1xlogn=0
61 id x=1x=1
62 fveq2 x=1logx=log1
63 62 56 eqtrdi x=1logx=0
64 63 oveq1d x=1logx1=01
65 61 64 oveq12d x=1xlogx1=101
66 54 21 subcli 01
67 66 mullidi 101=01
68 65 67 eqtrdi x=1xlogx1=01
69 60 68 oveq12d x=1n=1xlognxlogx1=001
70 nncan 01001=1
71 54 21 70 mp2an 001=1
72 69 71 eqtrdi x=1n=1xlognxlogx1=1
73 72 38 39 fvmpt3i 1+x+n=1xlognxlogx11=1
74 46 73 mp1i A+1Ax+n=1xlognxlogx11=1
75 45 74 oveq12d A+1Ax+n=1xlognxlogx1Ax+n=1xlognxlogx11=logA!-AlogA1-1
76 75 fveq2d A+1Ax+n=1xlognxlogx1Ax+n=1xlognxlogx11=logA!-AlogA1-1
77 ioorp 0+∞=+
78 77 eqcomi +=0+∞
79 nnuz =1
80 48 a1i A+1A1
81 1re 1
82 81 a1i A+1A1
83 pnfxr +∞*
84 83 a1i A+1A+∞*
85 1nn0 10
86 81 85 nn0addge1i 11+1
87 86 a1i A+1A11+1
88 0red A+1A0
89 rpre x+x
90 89 adantl A+1Ax+x
91 relogcl x+logx
92 91 adantl A+1Ax+logx
93 peano2rem logxlogx1
94 92 93 syl A+1Ax+logx1
95 90 94 remulcld A+1Ax+xlogx1
96 nnrp xx+
97 96 92 sylan2 A+1Axlogx
98 advlog dx+xlogx1dx=x+logx
99 98 a1i A+1Adx+xlogx1dx=x+logx
100 fveq2 x=nlogx=logn
101 simp32 A+1Ax+n+1xxnn+∞xn
102 logleb x+n+xnlogxlogn
103 102 3ad2ant2 A+1Ax+n+1xxnn+∞xnlogxlogn
104 101 103 mpbid A+1Ax+n+1xxnn+∞logxlogn
105 simprr A+1Ax+1x1x
106 simprl A+1Ax+1xx+
107 logleb 1+x+1xlog1logx
108 46 106 107 sylancr A+1Ax+1x1xlog1logx
109 105 108 mpbid A+1Ax+1xlog1logx
110 56 109 eqbrtrrid A+1Ax+1x0logx
111 46 a1i A+1A1+
112 1le1 11
113 112 a1i A+1A11
114 simpr A+1A1A
115 10 rexrd A+1AA*
116 pnfge A*A+∞
117 115 116 syl A+1AA+∞
118 78 79 80 82 84 87 88 95 92 97 99 100 104 38 110 111 1 113 114 117 34 dvfsum2 A+1Ax+n=1xlognxlogx1Ax+n=1xlognxlogx11logA
119 76 118 eqbrtrrd A+1AlogA!-AlogA1-1logA
120 20 24 12 29 119 letrd A+1AlogA!AlogA11logA
121 18 82 12 lesubaddd A+1AlogA!AlogA11logAlogA!AlogA1logA+1
122 120 121 mpbid A+1AlogA!AlogA1logA+1