| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  | 
						
							| 2 | 1 | rprege0d |  | 
						
							| 3 |  | flge0nn0 |  | 
						
							| 4 | 2 3 | syl |  | 
						
							| 5 | 4 | faccld |  | 
						
							| 6 | 5 | nnrpd |  | 
						
							| 7 |  | relogcl |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 |  | rpre |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | relogcl |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | peano2rem |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 | 10 14 | remulcld |  | 
						
							| 16 | 8 15 | resubcld |  | 
						
							| 17 | 16 | recnd |  | 
						
							| 18 | 17 | abscld |  | 
						
							| 19 |  | peano2rem |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 |  | ax-1cn |  | 
						
							| 22 |  | subcl |  | 
						
							| 23 | 17 21 22 | sylancl |  | 
						
							| 24 | 23 | abscld |  | 
						
							| 25 |  | abs1 |  | 
						
							| 26 | 25 | oveq2i |  | 
						
							| 27 |  | abs2dif |  | 
						
							| 28 | 17 21 27 | sylancl |  | 
						
							| 29 | 26 28 | eqbrtrrid |  | 
						
							| 30 |  | fveq2 |  | 
						
							| 31 | 30 | oveq2d |  | 
						
							| 32 | 31 | sumeq1d |  | 
						
							| 33 |  | id |  | 
						
							| 34 |  | fveq2 |  | 
						
							| 35 | 34 | oveq1d |  | 
						
							| 36 | 33 35 | oveq12d |  | 
						
							| 37 | 32 36 | oveq12d |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 |  | ovex |  | 
						
							| 40 | 37 38 39 | fvmpt3i |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 |  | logfac |  | 
						
							| 43 | 4 42 | syl |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 41 44 | eqtr4d |  | 
						
							| 46 |  | 1rp |  | 
						
							| 47 |  | fveq2 |  | 
						
							| 48 |  | 1z |  | 
						
							| 49 |  | flid |  | 
						
							| 50 | 48 49 | ax-mp |  | 
						
							| 51 | 47 50 | eqtrdi |  | 
						
							| 52 | 51 | oveq2d |  | 
						
							| 53 | 52 | sumeq1d |  | 
						
							| 54 |  | 0cn |  | 
						
							| 55 |  | fveq2 |  | 
						
							| 56 |  | log1 |  | 
						
							| 57 | 55 56 | eqtrdi |  | 
						
							| 58 | 57 | fsum1 |  | 
						
							| 59 | 48 54 58 | mp2an |  | 
						
							| 60 | 53 59 | eqtrdi |  | 
						
							| 61 |  | id |  | 
						
							| 62 |  | fveq2 |  | 
						
							| 63 | 62 56 | eqtrdi |  | 
						
							| 64 | 63 | oveq1d |  | 
						
							| 65 | 61 64 | oveq12d |  | 
						
							| 66 | 54 21 | subcli |  | 
						
							| 67 | 66 | mullidi |  | 
						
							| 68 | 65 67 | eqtrdi |  | 
						
							| 69 | 60 68 | oveq12d |  | 
						
							| 70 |  | nncan |  | 
						
							| 71 | 54 21 70 | mp2an |  | 
						
							| 72 | 69 71 | eqtrdi |  | 
						
							| 73 | 72 38 39 | fvmpt3i |  | 
						
							| 74 | 46 73 | mp1i |  | 
						
							| 75 | 45 74 | oveq12d |  | 
						
							| 76 | 75 | fveq2d |  | 
						
							| 77 |  | ioorp |  | 
						
							| 78 | 77 | eqcomi |  | 
						
							| 79 |  | nnuz |  | 
						
							| 80 | 48 | a1i |  | 
						
							| 81 |  | 1re |  | 
						
							| 82 | 81 | a1i |  | 
						
							| 83 |  | pnfxr |  | 
						
							| 84 | 83 | a1i |  | 
						
							| 85 |  | 1nn0 |  | 
						
							| 86 | 81 85 | nn0addge1i |  | 
						
							| 87 | 86 | a1i |  | 
						
							| 88 |  | 0red |  | 
						
							| 89 |  | rpre |  | 
						
							| 90 | 89 | adantl |  | 
						
							| 91 |  | relogcl |  | 
						
							| 92 | 91 | adantl |  | 
						
							| 93 |  | peano2rem |  | 
						
							| 94 | 92 93 | syl |  | 
						
							| 95 | 90 94 | remulcld |  | 
						
							| 96 |  | nnrp |  | 
						
							| 97 | 96 92 | sylan2 |  | 
						
							| 98 |  | advlog |  | 
						
							| 99 | 98 | a1i |  | 
						
							| 100 |  | fveq2 |  | 
						
							| 101 |  | simp32 |  | 
						
							| 102 |  | logleb |  | 
						
							| 103 | 102 | 3ad2ant2 |  | 
						
							| 104 | 101 103 | mpbid |  | 
						
							| 105 |  | simprr |  | 
						
							| 106 |  | simprl |  | 
						
							| 107 |  | logleb |  | 
						
							| 108 | 46 106 107 | sylancr |  | 
						
							| 109 | 105 108 | mpbid |  | 
						
							| 110 | 56 109 | eqbrtrrid |  | 
						
							| 111 | 46 | a1i |  | 
						
							| 112 |  | 1le1 |  | 
						
							| 113 | 112 | a1i |  | 
						
							| 114 |  | simpr |  | 
						
							| 115 | 10 | rexrd |  | 
						
							| 116 |  | pnfge |  | 
						
							| 117 | 115 116 | syl |  | 
						
							| 118 | 78 79 80 82 84 87 88 95 92 97 99 100 104 38 110 111 1 113 114 117 34 | dvfsum2 |  | 
						
							| 119 | 76 118 | eqbrtrrd |  | 
						
							| 120 | 20 24 12 29 119 | letrd |  | 
						
							| 121 | 18 82 12 | lesubaddd |  | 
						
							| 122 | 120 121 | mpbid |  |