Metamath Proof Explorer


Theorem logno1

Description: The logarithm function is not eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016) (Proof shortened by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion logno1 ¬ x + log x 𝑂1

Proof

Step Hyp Ref Expression
1 elioore y 1 +∞ y
2 1 adantl x + log x 𝑂1 y 1 +∞ y
3 1rp 1 +
4 3 a1i x + log x 𝑂1 y 1 +∞ 1 +
5 1red x + log x 𝑂1 y 1 +∞ 1
6 eliooord y 1 +∞ 1 < y y < +∞
7 6 adantl x + log x 𝑂1 y 1 +∞ 1 < y y < +∞
8 7 simpld x + log x 𝑂1 y 1 +∞ 1 < y
9 5 2 8 ltled x + log x 𝑂1 y 1 +∞ 1 y
10 2 4 9 rpgecld x + log x 𝑂1 y 1 +∞ y +
11 10 ex x + log x 𝑂1 y 1 +∞ y +
12 11 ssrdv x + log x 𝑂1 1 +∞ +
13 fveq2 x = y log x = log y
14 13 cbvmptv x + log x = y + log y
15 14 eleq1i x + log x 𝑂1 y + log y 𝑂1
16 15 biimpi x + log x 𝑂1 y + log y 𝑂1
17 12 16 o1res2 x + log x 𝑂1 y 1 +∞ log y 𝑂1
18 1red x + log x 𝑂1 1
19 18 rexrd x + log x 𝑂1 1 *
20 18 renepnfd x + log x 𝑂1 1 +∞
21 ioopnfsup 1 * 1 +∞ sup 1 +∞ * < = +∞
22 19 20 21 syl2anc x + log x 𝑂1 sup 1 +∞ * < = +∞
23 divlogrlim y 1 +∞ 1 log y 0
24 23 a1i x + log x 𝑂1 y 1 +∞ 1 log y 0
25 2 8 rplogcld x + log x 𝑂1 y 1 +∞ log y +
26 25 rpcnd x + log x 𝑂1 y 1 +∞ log y
27 25 rpne0d x + log x 𝑂1 y 1 +∞ log y 0
28 22 24 26 27 rlimno1 x + log x 𝑂1 ¬ y 1 +∞ log y 𝑂1
29 17 28 pm2.65i ¬ x + log x 𝑂1