Metamath Proof Explorer


Theorem lplnexllnN

Description: Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lplnexat.l ˙=K
lplnexat.j ˙=joinK
lplnexat.a A=AtomsK
lplnexat.n N=LLinesK
lplnexat.p P=LPlanesK
Assertion lplnexllnN KHLXPQAQ˙XyN¬Q˙yX=y˙Q

Proof

Step Hyp Ref Expression
1 lplnexat.l ˙=K
2 lplnexat.j ˙=joinK
3 lplnexat.a A=AtomsK
4 lplnexat.n N=LLinesK
5 lplnexat.p P=LPlanesK
6 simpl2 KHLXPQAQ˙XXP
7 simpl1 KHLXPQAQ˙XKHL
8 eqid BaseK=BaseK
9 8 5 lplnbase XPXBaseK
10 6 9 syl KHLXPQAQ˙XXBaseK
11 8 1 2 3 4 5 islpln3 KHLXBaseKXPzNrA¬r˙zX=z˙r
12 7 10 11 syl2anc KHLXPQAQ˙XXPzNrA¬r˙zX=z˙r
13 6 12 mpbid KHLXPQAQ˙XzNrA¬r˙zX=z˙r
14 simpll1 KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rKHL
15 simpr2l KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rzN
16 simpll3 KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rQA
17 simpr1 KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rQ˙z
18 1 2 3 4 llnexatN KHLzNQAQ˙zsAQsz=Q˙s
19 14 15 16 17 18 syl31anc KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙s
20 simp1l1 KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sKHL
21 simp22r KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙srA
22 simp3l KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙ssA
23 simp1l3 KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sQA
24 simp23l KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙s¬r˙z
25 simp3rr KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sz=Q˙s
26 25 breq2d KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sr˙zr˙Q˙s
27 24 26 mtbid KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙s¬r˙Q˙s
28 1 2 3 atnlej2 KHLrAQAsA¬r˙Q˙srs
29 20 21 23 22 27 28 syl131anc KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙srs
30 2 3 4 llni2 KHLrAsArsr˙sN
31 20 21 22 29 30 syl31anc KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sr˙sN
32 simp3rl KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sQs
33 1 2 3 hlatcon2 KHLQAsArAQs¬r˙Q˙s¬Q˙r˙s
34 20 23 22 21 32 27 33 syl132anc KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙s¬Q˙r˙s
35 simp23r KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sX=z˙r
36 25 oveq1d KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sz˙r=Q˙s˙r
37 20 hllatd KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sKLat
38 8 3 atbase QAQBaseK
39 23 38 syl KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sQBaseK
40 8 3 atbase sAsBaseK
41 22 40 syl KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙ssBaseK
42 8 3 atbase rArBaseK
43 21 42 syl KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙srBaseK
44 8 2 latj31 KLatQBaseKsBaseKrBaseKQ˙s˙r=r˙s˙Q
45 37 39 41 43 44 syl13anc KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sQ˙s˙r=r˙s˙Q
46 35 36 45 3eqtrd KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙sX=r˙s˙Q
47 breq2 y=r˙sQ˙yQ˙r˙s
48 47 notbid y=r˙s¬Q˙y¬Q˙r˙s
49 oveq1 y=r˙sy˙Q=r˙s˙Q
50 49 eqeq2d y=r˙sX=y˙QX=r˙s˙Q
51 48 50 anbi12d y=r˙s¬Q˙yX=y˙Q¬Q˙r˙sX=r˙s˙Q
52 51 rspcev r˙sN¬Q˙r˙sX=r˙s˙QyN¬Q˙yX=y˙Q
53 31 34 46 52 syl12anc KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙syN¬Q˙yX=y˙Q
54 53 3expia KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙syN¬Q˙yX=y˙Q
55 54 expd KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙syN¬Q˙yX=y˙Q
56 55 rexlimdv KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙rsAQsz=Q˙syN¬Q˙yX=y˙Q
57 19 56 mpd KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙ryN¬Q˙yX=y˙Q
58 57 3exp2 KHLXPQAQ˙XQ˙zzNrA¬r˙zX=z˙ryN¬Q˙yX=y˙Q
59 simpr2l KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rzN
60 simpr1 KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙r¬Q˙z
61 simpll1 KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rKHL
62 61 hllatd KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rKLat
63 8 4 llnbase zNzBaseK
64 59 63 syl KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rzBaseK
65 simpr2r KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rrA
66 65 42 syl KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rrBaseK
67 8 1 2 latlej1 KLatzBaseKrBaseKz˙z˙r
68 62 64 66 67 syl3anc KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rz˙z˙r
69 simpr3r KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rX=z˙r
70 68 69 breqtrrd KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rz˙X
71 simplr KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rQ˙X
72 simpll3 KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rQA
73 72 38 syl KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rQBaseK
74 simpll2 KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rXP
75 74 9 syl KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rXBaseK
76 8 1 2 latjle12 KLatzBaseKQBaseKXBaseKz˙XQ˙Xz˙Q˙X
77 62 64 73 75 76 syl13anc KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rz˙XQ˙Xz˙Q˙X
78 70 71 77 mpbi2and KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rz˙Q˙X
79 8 2 latjcl KLatzBaseKQBaseKz˙QBaseK
80 62 64 73 79 syl3anc KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rz˙QBaseK
81 eqid K=K
82 8 1 2 81 3 cvr1 KHLzBaseKQA¬Q˙zzKz˙Q
83 61 64 72 82 syl3anc KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙r¬Q˙zzKz˙Q
84 60 83 mpbid KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rzKz˙Q
85 8 81 4 5 lplni KHLz˙QBaseKzNzKz˙Qz˙QP
86 61 80 59 84 85 syl31anc KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rz˙QP
87 1 5 lplncmp KHLz˙QPXPz˙Q˙Xz˙Q=X
88 61 86 74 87 syl3anc KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rz˙Q˙Xz˙Q=X
89 78 88 mpbid KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rz˙Q=X
90 89 eqcomd KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙rX=z˙Q
91 breq2 y=zQ˙yQ˙z
92 91 notbid y=z¬Q˙y¬Q˙z
93 oveq1 y=zy˙Q=z˙Q
94 93 eqeq2d y=zX=y˙QX=z˙Q
95 92 94 anbi12d y=z¬Q˙yX=y˙Q¬Q˙zX=z˙Q
96 95 rspcev zN¬Q˙zX=z˙QyN¬Q˙yX=y˙Q
97 59 60 90 96 syl12anc KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙ryN¬Q˙yX=y˙Q
98 97 3exp2 KHLXPQAQ˙X¬Q˙zzNrA¬r˙zX=z˙ryN¬Q˙yX=y˙Q
99 58 98 pm2.61d KHLXPQAQ˙XzNrA¬r˙zX=z˙ryN¬Q˙yX=y˙Q
100 99 rexlimdvv KHLXPQAQ˙XzNrA¬r˙zX=z˙ryN¬Q˙yX=y˙Q
101 13 100 mpd KHLXPQAQ˙XyN¬Q˙yX=y˙Q