Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsslindf.u | |
|
lsslindf.x | |
||
Assertion | lsslindf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsslindf.u | |
|
2 | lsslindf.x | |
|
3 | rellindf | |
|
4 | 3 | brrelex1i | |
5 | 4 | a1i | |
6 | 3 | brrelex1i | |
7 | 6 | a1i | |
8 | simpr | |
|
9 | eqid | |
|
10 | 2 9 | ressbasss | |
11 | fss | |
|
12 | 8 10 11 | sylancl | |
13 | ffn | |
|
14 | 13 | adantl | |
15 | simp3 | |
|
16 | 9 1 | lssss | |
17 | 16 | 3ad2ant2 | |
18 | 2 9 | ressbas2 | |
19 | 17 18 | syl | |
20 | 15 19 | sseqtrd | |
21 | 20 | adantr | |
22 | df-f | |
|
23 | 14 21 22 | sylanbrc | |
24 | 12 23 | impbida | |
25 | 24 | adantr | |
26 | simpl2 | |
|
27 | eqid | |
|
28 | 2 27 | resssca | |
29 | 28 | eqcomd | |
30 | 26 29 | syl | |
31 | 30 | fveq2d | |
32 | 30 | fveq2d | |
33 | 32 | sneqd | |
34 | 31 33 | difeq12d | |
35 | eqid | |
|
36 | 2 35 | ressvsca | |
37 | 36 | eqcomd | |
38 | 26 37 | syl | |
39 | 38 | oveqd | |
40 | simpl1 | |
|
41 | imassrn | |
|
42 | simpl3 | |
|
43 | 41 42 | sstrid | |
44 | eqid | |
|
45 | eqid | |
|
46 | 2 44 45 1 | lsslsp | |
47 | 40 26 43 46 | syl3anc | |
48 | 47 | eqcomd | |
49 | 39 48 | eleq12d | |
50 | 49 | notbid | |
51 | 34 50 | raleqbidv | |
52 | 51 | ralbidv | |
53 | 25 52 | anbi12d | |
54 | 2 | ovexi | |
55 | 54 | a1i | |
56 | eqid | |
|
57 | eqid | |
|
58 | eqid | |
|
59 | eqid | |
|
60 | eqid | |
|
61 | 56 57 45 58 59 60 | islindf | |
62 | 55 61 | sylan | |
63 | eqid | |
|
64 | eqid | |
|
65 | 9 35 44 27 63 64 | islindf | |
66 | 65 | 3ad2antl1 | |
67 | 53 62 66 | 3bitr4d | |
68 | 67 | ex | |
69 | 5 7 68 | pm5.21ndd | |