Metamath Proof Explorer


Theorem lsslindf

Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses lsslindf.u U=LSubSpW
lsslindf.x X=W𝑠S
Assertion lsslindf WLModSUranFSFLIndFXFLIndFW

Proof

Step Hyp Ref Expression
1 lsslindf.u U=LSubSpW
2 lsslindf.x X=W𝑠S
3 rellindf RelLIndF
4 3 brrelex1i FLIndFXFV
5 4 a1i WLModSUranFSFLIndFXFV
6 3 brrelex1i FLIndFWFV
7 6 a1i WLModSUranFSFLIndFWFV
8 simpr WLModSUranFSF:domFBaseXF:domFBaseX
9 eqid BaseW=BaseW
10 2 9 ressbasss BaseXBaseW
11 fss F:domFBaseXBaseXBaseWF:domFBaseW
12 8 10 11 sylancl WLModSUranFSF:domFBaseXF:domFBaseW
13 ffn F:domFBaseWFFndomF
14 13 adantl WLModSUranFSF:domFBaseWFFndomF
15 simp3 WLModSUranFSranFS
16 9 1 lssss SUSBaseW
17 16 3ad2ant2 WLModSUranFSSBaseW
18 2 9 ressbas2 SBaseWS=BaseX
19 17 18 syl WLModSUranFSS=BaseX
20 15 19 sseqtrd WLModSUranFSranFBaseX
21 20 adantr WLModSUranFSF:domFBaseWranFBaseX
22 df-f F:domFBaseXFFndomFranFBaseX
23 14 21 22 sylanbrc WLModSUranFSF:domFBaseWF:domFBaseX
24 12 23 impbida WLModSUranFSF:domFBaseXF:domFBaseW
25 24 adantr WLModSUranFSFVF:domFBaseXF:domFBaseW
26 simpl2 WLModSUranFSFVSU
27 eqid ScalarW=ScalarW
28 2 27 resssca SUScalarW=ScalarX
29 28 eqcomd SUScalarX=ScalarW
30 26 29 syl WLModSUranFSFVScalarX=ScalarW
31 30 fveq2d WLModSUranFSFVBaseScalarX=BaseScalarW
32 30 fveq2d WLModSUranFSFV0ScalarX=0ScalarW
33 32 sneqd WLModSUranFSFV0ScalarX=0ScalarW
34 31 33 difeq12d WLModSUranFSFVBaseScalarX0ScalarX=BaseScalarW0ScalarW
35 eqid W=W
36 2 35 ressvsca SUW=X
37 36 eqcomd SUX=W
38 26 37 syl WLModSUranFSFVX=W
39 38 oveqd WLModSUranFSFVkXFx=kWFx
40 simpl1 WLModSUranFSFVWLMod
41 imassrn FdomFxranF
42 simpl3 WLModSUranFSFVranFS
43 41 42 sstrid WLModSUranFSFVFdomFxS
44 eqid LSpanW=LSpanW
45 eqid LSpanX=LSpanX
46 2 44 45 1 lsslsp WLModSUFdomFxSLSpanWFdomFx=LSpanXFdomFx
47 40 26 43 46 syl3anc WLModSUranFSFVLSpanWFdomFx=LSpanXFdomFx
48 47 eqcomd WLModSUranFSFVLSpanXFdomFx=LSpanWFdomFx
49 39 48 eleq12d WLModSUranFSFVkXFxLSpanXFdomFxkWFxLSpanWFdomFx
50 49 notbid WLModSUranFSFV¬kXFxLSpanXFdomFx¬kWFxLSpanWFdomFx
51 34 50 raleqbidv WLModSUranFSFVkBaseScalarX0ScalarX¬kXFxLSpanXFdomFxkBaseScalarW0ScalarW¬kWFxLSpanWFdomFx
52 51 ralbidv WLModSUranFSFVxdomFkBaseScalarX0ScalarX¬kXFxLSpanXFdomFxxdomFkBaseScalarW0ScalarW¬kWFxLSpanWFdomFx
53 25 52 anbi12d WLModSUranFSFVF:domFBaseXxdomFkBaseScalarX0ScalarX¬kXFxLSpanXFdomFxF:domFBaseWxdomFkBaseScalarW0ScalarW¬kWFxLSpanWFdomFx
54 2 ovexi XV
55 54 a1i WLModSUranFSXV
56 eqid BaseX=BaseX
57 eqid X=X
58 eqid ScalarX=ScalarX
59 eqid BaseScalarX=BaseScalarX
60 eqid 0ScalarX=0ScalarX
61 56 57 45 58 59 60 islindf XVFVFLIndFXF:domFBaseXxdomFkBaseScalarX0ScalarX¬kXFxLSpanXFdomFx
62 55 61 sylan WLModSUranFSFVFLIndFXF:domFBaseXxdomFkBaseScalarX0ScalarX¬kXFxLSpanXFdomFx
63 eqid BaseScalarW=BaseScalarW
64 eqid 0ScalarW=0ScalarW
65 9 35 44 27 63 64 islindf WLModFVFLIndFWF:domFBaseWxdomFkBaseScalarW0ScalarW¬kWFxLSpanWFdomFx
66 65 3ad2antl1 WLModSUranFSFVFLIndFWF:domFBaseWxdomFkBaseScalarW0ScalarW¬kWFxLSpanWFdomFx
67 53 62 66 3bitr4d WLModSUranFSFVFLIndFXFLIndFW
68 67 ex WLModSUranFSFVFLIndFXFLIndFW
69 5 7 68 pm5.21ndd WLModSUranFSFLIndFXFLIndFW