Metamath Proof Explorer


Theorem mapxpen

Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of TakeutiZaring p. 96. (Contributed by NM, 21-Feb-2004) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion mapxpen AVBWCXABCAB×C

Proof

Step Hyp Ref Expression
1 ovexd AVBWCXABCV
2 ovexd AVBWCXAB×CV
3 elmapi fABCf:CAB
4 3 ffvelcdmda fABCyCfyAB
5 elmapi fyABfy:BA
6 4 5 syl fABCyCfy:BA
7 6 ffvelcdmda fABCyCxBfyxA
8 7 an32s fABCxByCfyxA
9 8 ralrimiva fABCxByCfyxA
10 9 ralrimiva fABCxByCfyxA
11 eqid xB,yCfyx=xB,yCfyx
12 11 fmpo xByCfyxAxB,yCfyx:B×CA
13 10 12 sylib fABCxB,yCfyx:B×CA
14 simp1 AVBWCXAV
15 xpexg BWCXB×CV
16 15 3adant1 AVBWCXB×CV
17 elmapg AVB×CVxB,yCfyxAB×CxB,yCfyx:B×CA
18 14 16 17 syl2anc AVBWCXxB,yCfyxAB×CxB,yCfyx:B×CA
19 13 18 imbitrrid AVBWCXfABCxB,yCfyxAB×C
20 elmapi gAB×Cg:B×CA
21 20 adantl AVBWCXgAB×Cg:B×CA
22 fovcdm g:B×CAxByCxgyA
23 22 3expa g:B×CAxByCxgyA
24 23 an32s g:B×CAyCxBxgyA
25 21 24 sylanl1 AVBWCXgAB×CyCxBxgyA
26 25 fmpttd AVBWCXgAB×CyCxBxgy:BA
27 elmapg AVBWxBxgyABxBxgy:BA
28 27 3adant3 AVBWCXxBxgyABxBxgy:BA
29 28 ad2antrr AVBWCXgAB×CyCxBxgyABxBxgy:BA
30 26 29 mpbird AVBWCXgAB×CyCxBxgyAB
31 30 fmpttd AVBWCXgAB×CyCxBxgy:CAB
32 31 ex AVBWCXgAB×CyCxBxgy:CAB
33 ovex ABV
34 simp3 AVBWCXCX
35 elmapg ABVCXyCxBxgyABCyCxBxgy:CAB
36 33 34 35 sylancr AVBWCXyCxBxgyABCyCxBxgy:CAB
37 32 36 sylibrd AVBWCXgAB×CyCxBxgyABC
38 elmapfn gAB×CgFnB×C
39 38 ad2antll AVBWCXfABCgAB×CgFnB×C
40 fnov gFnB×Cg=xB,yCxgy
41 39 40 sylib AVBWCXfABCgAB×Cg=xB,yCxgy
42 simp3 AVBWCXfABCgAB×CxByCyC
43 26 adantlrl AVBWCXfABCgAB×CyCxBxgy:BA
44 43 3adant2 AVBWCXfABCgAB×CxByCxBxgy:BA
45 simp1l2 AVBWCXfABCgAB×CxByCBW
46 simp1l1 AVBWCXfABCgAB×CxByCAV
47 fex2 xBxgy:BABWAVxBxgyV
48 44 45 46 47 syl3anc AVBWCXfABCgAB×CxByCxBxgyV
49 eqid yCxBxgy=yCxBxgy
50 49 fvmpt2 yCxBxgyVyCxBxgyy=xBxgy
51 42 48 50 syl2anc AVBWCXfABCgAB×CxByCyCxBxgyy=xBxgy
52 51 fveq1d AVBWCXfABCgAB×CxByCyCxBxgyyx=xBxgyx
53 simp2 AVBWCXfABCgAB×CxByCxB
54 ovex xgyV
55 eqid xBxgy=xBxgy
56 55 fvmpt2 xBxgyVxBxgyx=xgy
57 53 54 56 sylancl AVBWCXfABCgAB×CxByCxBxgyx=xgy
58 52 57 eqtrd AVBWCXfABCgAB×CxByCyCxBxgyyx=xgy
59 58 mpoeq3dva AVBWCXfABCgAB×CxB,yCyCxBxgyyx=xB,yCxgy
60 41 59 eqtr4d AVBWCXfABCgAB×Cg=xB,yCyCxBxgyyx
61 eqid B=B
62 nfcv _xC
63 nfmpt1 _xxBxgy
64 62 63 nfmpt _xyCxBxgy
65 64 nfeq2 xf=yCxBxgy
66 nfmpt1 _yyCxBxgy
67 66 nfeq2 yf=yCxBxgy
68 fveq1 f=yCxBxgyfy=yCxBxgyy
69 68 fveq1d f=yCxBxgyfyx=yCxBxgyyx
70 69 a1d f=yCxBxgyyCfyx=yCxBxgyyx
71 67 70 ralrimi f=yCxBxgyyCfyx=yCxBxgyyx
72 eqid C=C
73 71 72 jctil f=yCxBxgyC=CyCfyx=yCxBxgyyx
74 73 a1d f=yCxBxgyxBC=CyCfyx=yCxBxgyyx
75 65 74 ralrimi f=yCxBxgyxBC=CyCfyx=yCxBxgyyx
76 mpoeq123 B=BxBC=CyCfyx=yCxBxgyyxxB,yCfyx=xB,yCyCxBxgyyx
77 61 75 76 sylancr f=yCxBxgyxB,yCfyx=xB,yCyCxBxgyyx
78 77 eqeq2d f=yCxBxgyg=xB,yCfyxg=xB,yCyCxBxgyyx
79 60 78 syl5ibrcom AVBWCXfABCgAB×Cf=yCxBxgyg=xB,yCfyx
80 3 ad2antrl AVBWCXfABCgAB×Cf:CAB
81 80 feqmptd AVBWCXfABCgAB×Cf=yCfy
82 simprl AVBWCXfABCgAB×CfABC
83 82 6 sylan AVBWCXfABCgAB×CyCfy:BA
84 83 feqmptd AVBWCXfABCgAB×CyCfy=xBfyx
85 84 mpteq2dva AVBWCXfABCgAB×CyCfy=yCxBfyx
86 81 85 eqtrd AVBWCXfABCgAB×Cf=yCxBfyx
87 nfmpo2 _yxB,yCfyx
88 87 nfeq2 yg=xB,yCfyx
89 eqidd g=xB,yCfyxB=B
90 nfmpo1 _xxB,yCfyx
91 90 nfeq2 xg=xB,yCfyx
92 nfv xyC
93 fvex fyxV
94 11 ovmpt4g xByCfyxVxxB,yCfyxy=fyx
95 93 94 mp3an3 xByCxxB,yCfyxy=fyx
96 oveq g=xB,yCfyxxgy=xxB,yCfyxy
97 96 eqeq1d g=xB,yCfyxxgy=fyxxxB,yCfyxy=fyx
98 95 97 imbitrrid g=xB,yCfyxxByCxgy=fyx
99 98 expcomd g=xB,yCfyxyCxBxgy=fyx
100 91 92 99 ralrimd g=xB,yCfyxyCxBxgy=fyx
101 mpteq12 B=BxBxgy=fyxxBxgy=xBfyx
102 89 100 101 syl6an g=xB,yCfyxyCxBxgy=xBfyx
103 88 102 ralrimi g=xB,yCfyxyCxBxgy=xBfyx
104 mpteq12 C=CyCxBxgy=xBfyxyCxBxgy=yCxBfyx
105 72 103 104 sylancr g=xB,yCfyxyCxBxgy=yCxBfyx
106 105 eqeq2d g=xB,yCfyxf=yCxBxgyf=yCxBfyx
107 86 106 syl5ibrcom AVBWCXfABCgAB×Cg=xB,yCfyxf=yCxBxgy
108 79 107 impbid AVBWCXfABCgAB×Cf=yCxBxgyg=xB,yCfyx
109 108 ex AVBWCXfABCgAB×Cf=yCxBxgyg=xB,yCfyx
110 1 2 19 37 109 en3d AVBWCXABCAB×C