Step |
Hyp |
Ref |
Expression |
1 |
|
mat1dim.a |
|
2 |
|
mat1dim.b |
|
3 |
|
mat1dim.o |
|
4 |
|
snfi |
|
5 |
|
simpl |
|
6 |
|
eqid |
|
7 |
1 6
|
matmulr |
|
8 |
7
|
eqcomd |
|
9 |
4 5 8
|
sylancr |
|
10 |
9
|
adantr |
|
11 |
10
|
oveqd |
|
12 |
|
eqid |
|
13 |
5
|
adantr |
|
14 |
4
|
a1i |
|
15 |
|
opex |
|
16 |
15
|
a1i |
|
17 |
|
simpl |
|
18 |
17
|
adantl |
|
19 |
16 18
|
fsnd |
|
20 |
3
|
opeq1i |
|
21 |
20
|
sneqi |
|
22 |
21
|
a1i |
|
23 |
|
xpsng |
|
24 |
23
|
anidms |
|
25 |
22 24
|
feq12d |
|
26 |
25
|
ad2antlr |
|
27 |
19 26
|
mpbird |
|
28 |
2
|
fvexi |
|
29 |
28
|
a1i |
|
30 |
|
snex |
|
31 |
30 30
|
xpex |
|
32 |
31
|
a1i |
|
33 |
29 32
|
elmapd |
|
34 |
27 33
|
mpbird |
|
35 |
|
simpr |
|
36 |
35
|
adantl |
|
37 |
16 36
|
fsnd |
|
38 |
3
|
opeq1i |
|
39 |
38
|
sneqi |
|
40 |
39
|
a1i |
|
41 |
40 24
|
feq12d |
|
42 |
41
|
ad2antlr |
|
43 |
37 42
|
mpbird |
|
44 |
29 32
|
elmapd |
|
45 |
43 44
|
mpbird |
|
46 |
6 2 12 13 14 14 14 34 45
|
mamuval |
|
47 |
|
simpr |
|
48 |
47
|
adantr |
|
49 |
|
eqid |
|
50 |
|
ringcmn |
|
51 |
50
|
ad2antrr |
|
52 |
|
df-ov |
|
53 |
21
|
fveq1i |
|
54 |
52 53
|
eqtri |
|
55 |
15
|
a1i |
|
56 |
55
|
anim2i |
|
57 |
56
|
ancomd |
|
58 |
|
fvsng |
|
59 |
57 58
|
syl |
|
60 |
59
|
adantl |
|
61 |
54 60
|
eqtrid |
|
62 |
61 18
|
eqeltrd |
|
63 |
|
df-ov |
|
64 |
39
|
fveq1i |
|
65 |
63 64
|
eqtri |
|
66 |
15
|
a1i |
|
67 |
|
fvsng |
|
68 |
66 67
|
sylan |
|
69 |
68
|
adantl |
|
70 |
65 69
|
eqtrid |
|
71 |
70 36
|
eqeltrd |
|
72 |
2 12
|
ringcl |
|
73 |
13 62 71 72
|
syl3anc |
|
74 |
|
oveq2 |
|
75 |
|
oveq1 |
|
76 |
74 75
|
oveq12d |
|
77 |
2
|
eqcomi |
|
78 |
77
|
a1i |
|
79 |
76 78
|
eleq12d |
|
80 |
79
|
ralsng |
|
81 |
80
|
ad2antlr |
|
82 |
73 81
|
mpbird |
|
83 |
49 51 14 82
|
gsummptcl |
|
84 |
|
eqid |
|
85 |
|
oveq1 |
|
86 |
85
|
oveq1d |
|
87 |
86
|
mpteq2dv |
|
88 |
87
|
oveq2d |
|
89 |
|
oveq2 |
|
90 |
89
|
oveq2d |
|
91 |
90
|
mpteq2dv |
|
92 |
91
|
oveq2d |
|
93 |
84 88 92
|
mposn |
|
94 |
48 48 83 93
|
syl3anc |
|
95 |
3
|
eqcomi |
|
96 |
95
|
a1i |
|
97 |
|
ringmnd |
|
98 |
97
|
ad2antrr |
|
99 |
2 76
|
gsumsn |
|
100 |
98 48 73 99
|
syl3anc |
|
101 |
96 100
|
opeq12d |
|
102 |
101
|
sneqd |
|
103 |
61 70
|
oveq12d |
|
104 |
103
|
opeq2d |
|
105 |
104
|
sneqd |
|
106 |
94 102 105
|
3eqtrd |
|
107 |
11 46 106
|
3eqtrd |
|