Metamath Proof Explorer


Theorem mat1dimmul

Description: The ring multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019) (Proof shortened by AV, 18-Apr-2021)

Ref Expression
Hypotheses mat1dim.a A=EMatR
mat1dim.b B=BaseR
mat1dim.o O=EE
Assertion mat1dimmul RRingEVXBYBOXAOY=OXRY

Proof

Step Hyp Ref Expression
1 mat1dim.a A=EMatR
2 mat1dim.b B=BaseR
3 mat1dim.o O=EE
4 snfi EFin
5 simpl RRingEVRRing
6 eqid RmaMulEEE=RmaMulEEE
7 1 6 matmulr EFinRRingRmaMulEEE=A
8 7 eqcomd EFinRRingA=RmaMulEEE
9 4 5 8 sylancr RRingEVA=RmaMulEEE
10 9 adantr RRingEVXBYBA=RmaMulEEE
11 10 oveqd RRingEVXBYBOXAOY=OXRmaMulEEEOY
12 eqid R=R
13 5 adantr RRingEVXBYBRRing
14 4 a1i RRingEVXBYBEFin
15 opex EEV
16 15 a1i RRingEVXBYBEEV
17 simpl XBYBXB
18 17 adantl RRingEVXBYBXB
19 16 18 fsnd RRingEVXBYBEEX:EEB
20 3 opeq1i OX=EEX
21 20 sneqi OX=EEX
22 21 a1i EVOX=EEX
23 xpsng EVEVE×E=EE
24 23 anidms EVE×E=EE
25 22 24 feq12d EVOX:E×EBEEX:EEB
26 25 ad2antlr RRingEVXBYBOX:E×EBEEX:EEB
27 19 26 mpbird RRingEVXBYBOX:E×EB
28 2 fvexi BV
29 28 a1i RRingEVXBYBBV
30 snex EV
31 30 30 xpex E×EV
32 31 a1i RRingEVXBYBE×EV
33 29 32 elmapd RRingEVXBYBOXBE×EOX:E×EB
34 27 33 mpbird RRingEVXBYBOXBE×E
35 simpr XBYBYB
36 35 adantl RRingEVXBYBYB
37 16 36 fsnd RRingEVXBYBEEY:EEB
38 3 opeq1i OY=EEY
39 38 sneqi OY=EEY
40 39 a1i EVOY=EEY
41 40 24 feq12d EVOY:E×EBEEY:EEB
42 41 ad2antlr RRingEVXBYBOY:E×EBEEY:EEB
43 37 42 mpbird RRingEVXBYBOY:E×EB
44 29 32 elmapd RRingEVXBYBOYBE×EOY:E×EB
45 43 44 mpbird RRingEVXBYBOYBE×E
46 6 2 12 13 14 14 14 34 45 mamuval RRingEVXBYBOXRmaMulEEEOY=xE,yERkExOXkRkOYy
47 simpr RRingEVEV
48 47 adantr RRingEVXBYBEV
49 eqid BaseR=BaseR
50 ringcmn RRingRCMnd
51 50 ad2antrr RRingEVXBYBRCMnd
52 df-ov EOXE=OXEE
53 21 fveq1i OXEE=EEXEE
54 52 53 eqtri EOXE=EEXEE
55 15 a1i YBEEV
56 55 anim2i XBYBXBEEV
57 56 ancomd XBYBEEVXB
58 fvsng EEVXBEEXEE=X
59 57 58 syl XBYBEEXEE=X
60 59 adantl RRingEVXBYBEEXEE=X
61 54 60 eqtrid RRingEVXBYBEOXE=X
62 61 18 eqeltrd RRingEVXBYBEOXEB
63 df-ov EOYE=OYEE
64 39 fveq1i OYEE=EEYEE
65 63 64 eqtri EOYE=EEYEE
66 15 a1i XBEEV
67 fvsng EEVYBEEYEE=Y
68 66 67 sylan XBYBEEYEE=Y
69 68 adantl RRingEVXBYBEEYEE=Y
70 65 69 eqtrid RRingEVXBYBEOYE=Y
71 70 36 eqeltrd RRingEVXBYBEOYEB
72 2 12 ringcl RRingEOXEBEOYEBEOXEREOYEB
73 13 62 71 72 syl3anc RRingEVXBYBEOXEREOYEB
74 oveq2 k=EEOXk=EOXE
75 oveq1 k=EkOYE=EOYE
76 74 75 oveq12d k=EEOXkRkOYE=EOXEREOYE
77 2 eqcomi BaseR=B
78 77 a1i k=EBaseR=B
79 76 78 eleq12d k=EEOXkRkOYEBaseREOXEREOYEB
80 79 ralsng EVkEEOXkRkOYEBaseREOXEREOYEB
81 80 ad2antlr RRingEVXBYBkEEOXkRkOYEBaseREOXEREOYEB
82 73 81 mpbird RRingEVXBYBkEEOXkRkOYEBaseR
83 49 51 14 82 gsummptcl RRingEVXBYBRkEEOXkRkOYEBaseR
84 eqid xE,yERkExOXkRkOYy=xE,yERkExOXkRkOYy
85 oveq1 x=ExOXk=EOXk
86 85 oveq1d x=ExOXkRkOYy=EOXkRkOYy
87 86 mpteq2dv x=EkExOXkRkOYy=kEEOXkRkOYy
88 87 oveq2d x=ERkExOXkRkOYy=RkEEOXkRkOYy
89 oveq2 y=EkOYy=kOYE
90 89 oveq2d y=EEOXkRkOYy=EOXkRkOYE
91 90 mpteq2dv y=EkEEOXkRkOYy=kEEOXkRkOYE
92 91 oveq2d y=ERkEEOXkRkOYy=RkEEOXkRkOYE
93 84 88 92 mposn EVEVRkEEOXkRkOYEBaseRxE,yERkExOXkRkOYy=EERkEEOXkRkOYE
94 48 48 83 93 syl3anc RRingEVXBYBxE,yERkExOXkRkOYy=EERkEEOXkRkOYE
95 3 eqcomi EE=O
96 95 a1i RRingEVXBYBEE=O
97 ringmnd RRingRMnd
98 97 ad2antrr RRingEVXBYBRMnd
99 2 76 gsumsn RMndEVEOXEREOYEBRkEEOXkRkOYE=EOXEREOYE
100 98 48 73 99 syl3anc RRingEVXBYBRkEEOXkRkOYE=EOXEREOYE
101 96 100 opeq12d RRingEVXBYBEERkEEOXkRkOYE=OEOXEREOYE
102 101 sneqd RRingEVXBYBEERkEEOXkRkOYE=OEOXEREOYE
103 61 70 oveq12d RRingEVXBYBEOXEREOYE=XRY
104 103 opeq2d RRingEVXBYBOEOXEREOYE=OXRY
105 104 sneqd RRingEVXBYBOEOXEREOYE=OXRY
106 94 102 105 3eqtrd RRingEVXBYBxE,yERkExOXkRkOYy=OXRY
107 11 46 106 3eqtrd RRingEVXBYBOXAOY=OXRY