Metamath Proof Explorer


Theorem matinvgcell

Description: Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019)

Ref Expression
Hypotheses matplusgcell.a A=NMatR
matplusgcell.b B=BaseA
matinvgcell.v V=invgR
matinvgcell.w W=invgA
Assertion matinvgcell RRingXBINJNIWXJ=VIXJ

Proof

Step Hyp Ref Expression
1 matplusgcell.a A=NMatR
2 matplusgcell.b B=BaseA
3 matinvgcell.v V=invgR
4 matinvgcell.w W=invgA
5 1 2 matrcl XBNFinRV
6 5 simpld XBNFin
7 simpl RRingXBRRing
8 1 matgrp NFinRRingAGrp
9 6 7 8 syl2an2 RRingXBAGrp
10 eqid 0A=0A
11 2 10 grpidcl AGrp0AB
12 9 11 syl RRingXB0AB
13 simpr RRingXBXB
14 12 13 jca RRingXB0ABXB
15 14 3adant3 RRingXBINJN0ABXB
16 eqid -A=-A
17 eqid -R=-R
18 1 2 16 17 matsubgcell RRing0ABXBINJNI0A-AXJ=I0AJ-RIXJ
19 15 18 syld3an2 RRingXBINJNI0A-AXJ=I0AJ-RIXJ
20 2 16 4 10 grpinvval2 AGrpXBWX=0A-AX
21 9 13 20 syl2anc RRingXBWX=0A-AX
22 21 3adant3 RRingXBINJNWX=0A-AX
23 22 oveqd RRingXBINJNIWXJ=I0A-AXJ
24 ringgrp RRingRGrp
25 24 3ad2ant1 RRingXBINJNRGrp
26 simp3 RRingXBINJNINJN
27 2 eleq2i XBXBaseA
28 27 biimpi XBXBaseA
29 28 3ad2ant2 RRingXBINJNXBaseA
30 df-3an INJNXBaseAINJNXBaseA
31 26 29 30 sylanbrc RRingXBINJNINJNXBaseA
32 eqid BaseR=BaseR
33 1 32 matecl INJNXBaseAIXJBaseR
34 31 33 syl RRingXBINJNIXJBaseR
35 eqid 0R=0R
36 32 17 3 35 grpinvval2 RGrpIXJBaseRVIXJ=0R-RIXJ
37 25 34 36 syl2anc RRingXBINJNVIXJ=0R-RIXJ
38 6 anim1i XBRRingNFinRRing
39 38 ancoms RRingXBNFinRRing
40 1 35 mat0op NFinRRing0A=xN,yN0R
41 39 40 syl RRingXB0A=xN,yN0R
42 41 3adant3 RRingXBINJN0A=xN,yN0R
43 eqidd RRingXBINJNx=Iy=J0R=0R
44 26 simpld RRingXBINJNIN
45 simp3r RRingXBINJNJN
46 fvexd RRingXBINJN0RV
47 42 43 44 45 46 ovmpod RRingXBINJNI0AJ=0R
48 47 eqcomd RRingXBINJN0R=I0AJ
49 48 oveq1d RRingXBINJN0R-RIXJ=I0AJ-RIXJ
50 37 49 eqtrd RRingXBINJNVIXJ=I0AJ-RIXJ
51 19 23 50 3eqtr4d RRingXBINJNIWXJ=VIXJ