Metamath Proof Explorer


Theorem mbfeqalem1

Description: Lemma for mbfeqalem2 . (Contributed by Mario Carneiro, 2-Sep-2014) (Revised by AV, 19-Aug-2022)

Ref Expression
Hypotheses mbfeqa.1 φA
mbfeqa.2 φvol*A=0
mbfeqa.3 φxBAC=D
mbfeqalem.4 φxBC
mbfeqalem.5 φxBD
Assertion mbfeqalem1 φxBC-1yxBD-1ydomvol

Proof

Step Hyp Ref Expression
1 mbfeqa.1 φA
2 mbfeqa.2 φvol*A=0
3 mbfeqa.3 φxBAC=D
4 mbfeqalem.4 φxBC
5 mbfeqalem.5 φxBD
6 dfsymdif4 xBC-1yxBD-1y=z|¬zxBC-1yzxBD-1y
7 eldif zBAzB¬zA
8 eldifi xBAxB
9 8 4 sylan2 φxBAC
10 eqid xBC=xBC
11 10 fvmpt2 xBCxBCx=C
12 8 9 11 syl2an2 φxBAxBCx=C
13 8 5 sylan2 φxBAD
14 eqid xBD=xBD
15 14 fvmpt2 xBDxBDx=D
16 8 13 15 syl2an2 φxBAxBDx=D
17 3 12 16 3eqtr4d φxBAxBCx=xBDx
18 17 ralrimiva φxBAxBCx=xBDx
19 nfv zxBCx=xBDx
20 nffvmpt1 _xxBCz
21 nffvmpt1 _xxBDz
22 20 21 nfeq xxBCz=xBDz
23 fveq2 x=zxBCx=xBCz
24 fveq2 x=zxBDx=xBDz
25 23 24 eqeq12d x=zxBCx=xBDxxBCz=xBDz
26 19 22 25 cbvralw xBAxBCx=xBDxzBAxBCz=xBDz
27 18 26 sylib φzBAxBCz=xBDz
28 27 r19.21bi φzBAxBCz=xBDz
29 28 eleq1d φzBAxBCzyxBDzy
30 7 29 sylan2br φzB¬zAxBCzyxBDzy
31 30 anass1rs φ¬zAzBxBCzyxBDzy
32 31 pm5.32da φ¬zAzBxBCzyzBxBDzy
33 4 fmpttd φxBC:B
34 33 ffnd φxBCFnB
35 34 adantr φ¬zAxBCFnB
36 elpreima xBCFnBzxBC-1yzBxBCzy
37 35 36 syl φ¬zAzxBC-1yzBxBCzy
38 5 fmpttd φxBD:B
39 38 ffnd φxBDFnB
40 39 adantr φ¬zAxBDFnB
41 elpreima xBDFnBzxBD-1yzBxBDzy
42 40 41 syl φ¬zAzxBD-1yzBxBDzy
43 32 37 42 3bitr4d φ¬zAzxBC-1yzxBD-1y
44 43 ex φ¬zAzxBC-1yzxBD-1y
45 44 con1d φ¬zxBC-1yzxBD-1yzA
46 45 abssdv φz|¬zxBC-1yzxBD-1yA
47 6 46 eqsstrid φxBC-1yxBD-1yA
48 47 difsymssdifssd φxBC-1yxBD-1yA
49 48 1 sstrd φxBC-1yxBD-1y
50 ovolssnul xBC-1yxBD-1yAAvol*A=0vol*xBC-1yxBD-1y=0
51 48 1 2 50 syl3anc φvol*xBC-1yxBD-1y=0
52 nulmbl xBC-1yxBD-1yvol*xBC-1yxBD-1y=0xBC-1yxBD-1ydomvol
53 49 51 52 syl2anc φxBC-1yxBD-1ydomvol