Metamath Proof Explorer


Theorem mbfresmf

Description: A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses mbfresmf.1 φFMblFn
mbfresmf.2 φranF
mbfresmf.3 S=domvol
Assertion mbfresmf φFSMblFnS

Proof

Step Hyp Ref Expression
1 mbfresmf.1 φFMblFn
2 mbfresmf.2 φranF
3 mbfresmf.3 S=domvol
4 nfv aφ
5 3 a1i φS=domvol
6 dmvolsal domvolSAlg
7 6 a1i φdomvolSAlg
8 5 7 eqeltrd φSSAlg
9 mbfdmssre FMblFndomF
10 1 9 syl φdomF
11 3 unieqi S=domvol
12 unidmvol domvol=
13 11 12 eqtri S=
14 10 13 sseqtrrdi φdomFS
15 mbff FMblFnF:domF
16 ffn F:domFFFndomF
17 1 15 16 3syl φFFndomF
18 17 2 jca φFFndomFranF
19 df-f F:domFFFndomFranF
20 18 19 sylibr φF:domF
21 20 adantr φaF:domF
22 rexr aa*
23 22 adantl φaa*
24 21 23 preimaioomnf φaF-1−∞a=xdomF|Fx<a
25 24 eqcomd φaxdomF|Fx<a=F-1−∞a
26 6 elexi domvolV
27 3 26 eqeltri SV
28 27 a1i φaSV
29 1 dmexd φdomFV
30 29 adantr φadomFV
31 mbfima FMblFnF:domFF-1−∞adomvol
32 1 20 31 syl2anc φF-1−∞adomvol
33 32 5 eleqtrrd φF-1−∞aS
34 33 adantr φaF-1−∞aS
35 cnvimass F-1−∞adomF
36 dfss F-1−∞adomFF-1−∞a=F-1−∞adomF
37 36 biimpi F-1−∞adomFF-1−∞a=F-1−∞adomF
38 35 37 ax-mp F-1−∞a=F-1−∞adomF
39 28 30 34 38 elrestd φaF-1−∞aS𝑡domF
40 25 39 eqeltrd φaxdomF|Fx<aS𝑡domF
41 4 8 14 20 40 issmfd φFSMblFnS