| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetf.d |
|
| 2 |
|
mdetf.a |
|
| 3 |
|
mdetf.b |
|
| 4 |
|
mdetf.k |
|
| 5 |
|
crngring |
|
| 6 |
5
|
adantr |
|
| 7 |
|
ringcmn |
|
| 8 |
6 7
|
syl |
|
| 9 |
2 3
|
matrcl |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
simpld |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
symgbasfi |
|
| 15 |
11 14
|
syl |
|
| 16 |
5
|
ad2antrr |
|
| 17 |
|
zrhpsgnmhm |
|
| 18 |
6 11 17
|
syl2anc |
|
| 19 |
|
eqid |
|
| 20 |
19 4
|
mgpbas |
|
| 21 |
13 20
|
mhmf |
|
| 22 |
18 21
|
syl |
|
| 23 |
22
|
ffvelcdmda |
|
| 24 |
19
|
crngmgp |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
11
|
adantr |
|
| 27 |
2 4 3
|
matbas2i |
|
| 28 |
27
|
ad3antlr |
|
| 29 |
|
elmapi |
|
| 30 |
28 29
|
syl |
|
| 31 |
12 13
|
symgbasf |
|
| 32 |
31
|
adantl |
|
| 33 |
32
|
ffvelcdmda |
|
| 34 |
|
simpr |
|
| 35 |
30 33 34
|
fovcdmd |
|
| 36 |
35
|
ralrimiva |
|
| 37 |
20 25 26 36
|
gsummptcl |
|
| 38 |
|
eqid |
|
| 39 |
4 38
|
ringcl |
|
| 40 |
16 23 37 39
|
syl3anc |
|
| 41 |
40
|
ralrimiva |
|
| 42 |
4 8 15 41
|
gsummptcl |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
1 2 3 13 43 44 38 19
|
mdetfval |
|
| 46 |
42 45
|
fmptd |
|