Metamath Proof Explorer


Theorem meaiunlelem

Description: The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meaiunlelem.1 nφ
meaiunlelem.m φMMeas
meaiunlelem.s S=domM
meaiunlelem.z Z=N
meaiunlelem.e φE:ZS
meaiunlelem.f F=nZEniN..^nEi
Assertion meaiunlelem φMnZEnsum^nZMEn

Proof

Step Hyp Ref Expression
1 meaiunlelem.1 nφ
2 meaiunlelem.m φMMeas
3 meaiunlelem.s S=domM
4 meaiunlelem.z Z=N
5 meaiunlelem.e φE:ZS
6 meaiunlelem.f F=nZEniN..^nEi
7 1 4 5 6 iundjiun φxZn=NxFn=n=NxEnnZFn=nZEnDisjnZFn
8 7 simplrd φnZFn=nZEn
9 8 eqcomd φnZEn=nZFn
10 9 fveq2d φMnZEn=MnZFn
11 2 3 dmmeasal φSSAlg
12 11 adantr φnZSSAlg
13 5 ffvelcdmda φnZEnS
14 fzofi N..^nFin
15 isfinite N..^nFinN..^nω
16 15 biimpi N..^nFinN..^nω
17 sdomdom N..^nωN..^nω
18 16 17 syl N..^nFinN..^nω
19 14 18 ax-mp N..^nω
20 19 a1i φN..^nω
21 5 adantr φiN..^nE:ZS
22 elfzouz iN..^niN
23 4 eqcomi N=Z
24 22 23 eleqtrdi iN..^niZ
25 24 adantl φiN..^niZ
26 21 25 ffvelcdmd φiN..^nEiS
27 11 20 26 saliuncl φiN..^nEiS
28 27 adantr φnZiN..^nEiS
29 saldifcl2 SSAlgEnSiN..^nEiSEniN..^nEiS
30 12 13 28 29 syl3anc φnZEniN..^nEiS
31 1 30 6 fmptdf φF:ZS
32 31 ffvelcdmda φnZFnS
33 eqid N=N
34 33 uzct Nω
35 4 34 eqbrtri Zω
36 35 a1i φZω
37 7 simprd φDisjnZFn
38 1 2 3 32 36 37 meadjiun φMnZFn=sum^nZMFn
39 eqidd φsum^nZMFn=sum^nZMFn
40 10 38 39 3eqtrd φMnZEn=sum^nZMFn
41 4 fvexi ZV
42 41 a1i φZV
43 2 adantr φnZMMeas
44 43 3 32 meacl φnZMFn0+∞
45 43 3 13 meacl φnZMEn0+∞
46 simpr φnZnZ
47 13 difexd φnZEniN..^nEiV
48 6 fvmpt2 nZEniN..^nEiVFn=EniN..^nEi
49 46 47 48 syl2anc φnZFn=EniN..^nEi
50 difssd φnZEniN..^nEiEn
51 49 50 eqsstrd φnZFnEn
52 43 3 32 13 51 meassle φnZMFnMEn
53 1 42 44 45 52 sge0lempt φsum^nZMFnsum^nZMEn
54 40 53 eqbrtrd φMnZEnsum^nZMEn