Metamath Proof Explorer


Theorem measxun2

Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017)

Ref Expression
Assertion measxun2 MmeasuresSASBSBAMA=MB+𝑒MAB

Proof

Step Hyp Ref Expression
1 simp1 MmeasuresSASBSBAMmeasuresS
2 simp2r MmeasuresSASBSBABS
3 measbase MmeasuresSSransigAlgebra
4 1 3 syl MmeasuresSASBSBASransigAlgebra
5 simp2l MmeasuresSASBSBAAS
6 difelsiga SransigAlgebraASBSABS
7 4 5 2 6 syl3anc MmeasuresSASBSBAABS
8 prelpwi BSABSBAB𝒫S
9 2 7 8 syl2anc MmeasuresSASBSBABAB𝒫S
10 prct BSABSBABω
11 2 7 10 syl2anc MmeasuresSASBSBABABω
12 simp3 MmeasuresSASBSBABA
13 disjdifprg2 ASDisjxABABx
14 prcom ABB=BAB
15 dfss BAB=BA
16 15 biimpi BAB=BA
17 incom BA=AB
18 16 17 eqtrdi BAB=AB
19 18 preq2d BAABB=ABAB
20 14 19 eqtr3id BABAB=ABAB
21 20 disjeq1d BADisjxBABxDisjxABABx
22 21 biimprd BADisjxABABxDisjxBABx
23 13 22 mpan9 ASBADisjxBABx
24 5 12 23 syl2anc MmeasuresSASBSBADisjxBABx
25 11 24 jca MmeasuresSASBSBABABωDisjxBABx
26 measvun MmeasuresSBAB𝒫SBABωDisjxBABxMBAB=*xBABMx
27 1 9 25 26 syl3anc MmeasuresSASBSBAMBAB=*xBABMx
28 2 7 jca MmeasuresSASBSBABSABS
29 uniprg BSABSBAB=BAB
30 undif BABAB=A
31 30 biimpi BABAB=A
32 29 31 sylan9eq BSABSBABAB=A
33 32 fveq2d BSABSBAMBAB=MA
34 28 12 33 syl2anc MmeasuresSASBSBAMBAB=MA
35 simpr MmeasuresSASBSBAx=Bx=B
36 35 fveq2d MmeasuresSASBSBAx=BMx=MB
37 simpr MmeasuresSASBSBAx=ABx=AB
38 37 fveq2d MmeasuresSASBSBAx=ABMx=MAB
39 measvxrge0 MmeasuresSBSMB0+∞
40 1 2 39 syl2anc MmeasuresSASBSBAMB0+∞
41 measvxrge0 MmeasuresSABSMAB0+∞
42 1 7 41 syl2anc MmeasuresSASBSBAMAB0+∞
43 eqimss B=ABBAB
44 ssdifeq0 BABB=
45 43 44 sylib B=ABB=
46 45 fveq2d B=ABMB=M
47 measvnul MmeasuresSM=0
48 46 47 sylan9eqr MmeasuresSB=ABMB=0
49 1 48 sylan MmeasuresSASBSBAB=ABMB=0
50 49 orcd MmeasuresSASBSBAB=ABMB=0MB=+∞
51 50 ex MmeasuresSASBSBAB=ABMB=0MB=+∞
52 36 38 2 7 40 42 51 esumpr2 MmeasuresSASBSBA*xBABMx=MB+𝑒MAB
53 27 34 52 3eqtr3d MmeasuresSASBSBAMA=MB+𝑒MAB