| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  | 
						
							| 2 |  | simp2r |  | 
						
							| 3 |  | measbase |  | 
						
							| 4 | 1 3 | syl |  | 
						
							| 5 |  | simp2l |  | 
						
							| 6 |  | difelsiga |  | 
						
							| 7 | 4 5 2 6 | syl3anc |  | 
						
							| 8 |  | prelpwi |  | 
						
							| 9 | 2 7 8 | syl2anc |  | 
						
							| 10 |  | prct |  | 
						
							| 11 | 2 7 10 | syl2anc |  | 
						
							| 12 |  | simp3 |  | 
						
							| 13 |  | disjdifprg2 |  | 
						
							| 14 |  | prcom |  | 
						
							| 15 |  | dfss |  | 
						
							| 16 | 15 | biimpi |  | 
						
							| 17 |  | incom |  | 
						
							| 18 | 16 17 | eqtrdi |  | 
						
							| 19 | 18 | preq2d |  | 
						
							| 20 | 14 19 | eqtr3id |  | 
						
							| 21 | 20 | disjeq1d |  | 
						
							| 22 | 21 | biimprd |  | 
						
							| 23 | 13 22 | mpan9 |  | 
						
							| 24 | 5 12 23 | syl2anc |  | 
						
							| 25 | 11 24 | jca |  | 
						
							| 26 |  | measvun |  | 
						
							| 27 | 1 9 25 26 | syl3anc |  | 
						
							| 28 | 2 7 | jca |  | 
						
							| 29 |  | uniprg |  | 
						
							| 30 |  | undif |  | 
						
							| 31 | 30 | biimpi |  | 
						
							| 32 | 29 31 | sylan9eq |  | 
						
							| 33 | 32 | fveq2d |  | 
						
							| 34 | 28 12 33 | syl2anc |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 35 | fveq2d |  | 
						
							| 37 |  | simpr |  | 
						
							| 38 | 37 | fveq2d |  | 
						
							| 39 |  | measvxrge0 |  | 
						
							| 40 | 1 2 39 | syl2anc |  | 
						
							| 41 |  | measvxrge0 |  | 
						
							| 42 | 1 7 41 | syl2anc |  | 
						
							| 43 |  | eqimss |  | 
						
							| 44 |  | ssdifeq0 |  | 
						
							| 45 | 43 44 | sylib |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 |  | measvnul |  | 
						
							| 48 | 46 47 | sylan9eqr |  | 
						
							| 49 | 1 48 | sylan |  | 
						
							| 50 | 49 | orcd |  | 
						
							| 51 | 50 | ex |  | 
						
							| 52 | 36 38 2 7 40 42 51 | esumpr2 |  | 
						
							| 53 | 27 34 52 | 3eqtr3d |  |