Metamath Proof Explorer


Theorem metakunt1

Description: A is an endomapping. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses metakunt1.1 φM
metakunt1.2 φI
metakunt1.3 φIM
metakunt1.4 A=x1Mifx=IMifx<Ixx1
Assertion metakunt1 φA:1M1M

Proof

Step Hyp Ref Expression
1 metakunt1.1 φM
2 metakunt1.2 φI
3 metakunt1.3 φIM
4 metakunt1.4 A=x1Mifx=IMifx<Ixx1
5 eleq1 M=ifx=IMifx<Ixx1M1Mifx=IMifx<Ixx11M
6 eleq1 ifx<Ixx1=ifx=IMifx<Ixx1ifx<Ixx11Mifx=IMifx<Ixx11M
7 1zzd φx1Mx=I1
8 1 nnzd φM
9 8 ad2antrr φx1Mx=IM
10 1 ad2antrr φx1Mx=IM
11 10 nnge1d φx1Mx=I1M
12 1 nnred φM
13 12 ad2antrr φx1Mx=IM
14 13 leidd φx1Mx=IMM
15 7 9 9 11 14 elfzd φx1Mx=IM1M
16 eleq1 x=ifx<Ixx1x1Mifx<Ixx11M
17 eleq1 x1=ifx<Ixx1x11Mifx<Ixx11M
18 simpllr φx1M¬x=Ix<Ix1M
19 pm4.56 ¬x=I¬x<I¬x=Ix<I
20 19 anbi2i φx1M¬x=I¬x<Iφx1M¬x=Ix<I
21 2 nnred φI
22 21 adantr φx1MI
23 elfznn x1Mx
24 23 nnred x1Mx
25 24 adantl φx1Mx
26 22 25 jca φx1MIx
27 axlttri IxI<x¬I=xx<I
28 26 27 syl φx1MI<x¬I=xx<I
29 eqcom I=xx=I
30 29 orbi1i I=xx<Ix=Ix<I
31 30 notbii ¬I=xx<I¬x=Ix<I
32 28 31 bitrdi φx1MI<x¬x=Ix<I
33 1zzd φx1MI<x1
34 8 3ad2ant1 φx1MI<xM
35 simp2 φx1MI<xx1M
36 35 elfzelzd φx1MI<xx
37 36 33 zsubcld φx1MI<xx1
38 1red φx1MI<x1
39 22 3adant3 φx1MI<xI
40 35 24 syl φx1MI<xx
41 2 nnge1d φ1I
42 41 3ad2ant1 φx1MI<x1I
43 simp3 φx1MI<xI<x
44 38 39 40 42 43 lelttrd φx1MI<x1<x
45 33 36 zltlem1d φx1MI<x1<x1x1
46 44 45 mpbid φx1MI<x1x1
47 1red φx1M1
48 25 47 resubcld φx1Mx1
49 12 adantr φx1MM
50 0le1 01
51 50 a1i x1M01
52 1red x1M1
53 24 52 subge02d x1M01x1x
54 51 53 mpbid x1Mx1x
55 54 adantl φx1Mx1x
56 elfzle2 x1MxM
57 56 adantl φx1MxM
58 48 25 49 55 57 letrd φx1Mx1M
59 58 3adant3 φx1MI<xx1M
60 33 34 37 46 59 elfzd φx1MI<xx11M
61 60 3expia φx1MI<xx11M
62 32 61 sylbird φx1M¬x=Ix<Ix11M
63 62 imp φx1M¬x=Ix<Ix11M
64 20 63 sylbi φx1M¬x=I¬x<Ix11M
65 64 anassrs φx1M¬x=I¬x<Ix11M
66 16 17 18 65 ifbothda φx1M¬x=Iifx<Ixx11M
67 5 6 15 66 ifbothda φx1Mifx=IMifx<Ixx11M
68 67 4 fmptd φA:1M1M