Description: A is an endomapping. (Contributed by metakunt, 23-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt1.1 | |
|
metakunt1.2 | |
||
metakunt1.3 | |
||
metakunt1.4 | |
||
Assertion | metakunt1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt1.1 | |
|
2 | metakunt1.2 | |
|
3 | metakunt1.3 | |
|
4 | metakunt1.4 | |
|
5 | eleq1 | |
|
6 | eleq1 | |
|
7 | 1zzd | |
|
8 | 1 | nnzd | |
9 | 8 | ad2antrr | |
10 | 1 | ad2antrr | |
11 | 10 | nnge1d | |
12 | 1 | nnred | |
13 | 12 | ad2antrr | |
14 | 13 | leidd | |
15 | 7 9 9 11 14 | elfzd | |
16 | eleq1 | |
|
17 | eleq1 | |
|
18 | simpllr | |
|
19 | pm4.56 | |
|
20 | 19 | anbi2i | |
21 | 2 | nnred | |
22 | 21 | adantr | |
23 | elfznn | |
|
24 | 23 | nnred | |
25 | 24 | adantl | |
26 | 22 25 | jca | |
27 | axlttri | |
|
28 | 26 27 | syl | |
29 | eqcom | |
|
30 | 29 | orbi1i | |
31 | 30 | notbii | |
32 | 28 31 | bitrdi | |
33 | 1zzd | |
|
34 | 8 | 3ad2ant1 | |
35 | simp2 | |
|
36 | 35 | elfzelzd | |
37 | 36 33 | zsubcld | |
38 | 1red | |
|
39 | 22 | 3adant3 | |
40 | 35 24 | syl | |
41 | 2 | nnge1d | |
42 | 41 | 3ad2ant1 | |
43 | simp3 | |
|
44 | 38 39 40 42 43 | lelttrd | |
45 | 33 36 | zltlem1d | |
46 | 44 45 | mpbid | |
47 | 1red | |
|
48 | 25 47 | resubcld | |
49 | 12 | adantr | |
50 | 0le1 | |
|
51 | 50 | a1i | |
52 | 1red | |
|
53 | 24 52 | subge02d | |
54 | 51 53 | mpbid | |
55 | 54 | adantl | |
56 | elfzle2 | |
|
57 | 56 | adantl | |
58 | 48 25 49 55 57 | letrd | |
59 | 58 | 3adant3 | |
60 | 33 34 37 46 59 | elfzd | |
61 | 60 | 3expia | |
62 | 32 61 | sylbird | |
63 | 62 | imp | |
64 | 20 63 | sylbi | |
65 | 64 | anassrs | |
66 | 16 17 18 65 | ifbothda | |
67 | 5 6 15 66 | ifbothda | |
68 | 67 4 | fmptd | |