Metamath Proof Explorer


Theorem metakunt7

Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt7.1 φM
metakunt7.2 φI
metakunt7.3 φIM
metakunt7.4 A=x1Mifx=IMifx<Ixx1
metakunt7.5 C=y1Mify=MIify<Iyy+1
metakunt7.6 φX1M
Assertion metakunt7 φI<XAX=X1¬AX=M¬AX<I

Proof

Step Hyp Ref Expression
1 metakunt7.1 φM
2 metakunt7.2 φI
3 metakunt7.3 φIM
4 metakunt7.4 A=x1Mifx=IMifx<Ixx1
5 metakunt7.5 C=y1Mify=MIify<Iyy+1
6 metakunt7.6 φX1M
7 4 a1i φI<XA=x1Mifx=IMifx<Ixx1
8 eqeq1 x=Xx=IX=I
9 breq1 x=Xx<IX<I
10 id x=Xx=X
11 oveq1 x=Xx1=X1
12 9 10 11 ifbieq12d x=Xifx<Ixx1=ifX<IXX1
13 8 12 ifbieq2d x=Xifx=IMifx<Ixx1=ifX=IMifX<IXX1
14 13 adantl φI<Xx=Xifx=IMifx<Ixx1=ifX=IMifX<IXX1
15 2 nnred φI
16 15 adantr φI<XI
17 simpr φI<XI<X
18 16 17 ltned φI<XIX
19 18 necomd φI<XXI
20 df-ne XI¬X=I
21 19 20 sylib φI<X¬X=I
22 iffalse ¬X=IifX=IMifX<IXX1=ifX<IXX1
23 21 22 syl φI<XifX=IMifX<IXX1=ifX<IXX1
24 elfznn X1MX
25 6 24 syl φX
26 25 nnred φX
27 26 adantr φI<XX
28 16 27 17 ltled φI<XIX
29 16 27 lenltd φI<XIX¬X<I
30 28 29 mpbid φI<X¬X<I
31 iffalse ¬X<IifX<IXX1=X1
32 30 31 syl φI<XifX<IXX1=X1
33 23 32 eqtrd φI<XifX=IMifX<IXX1=X1
34 33 adantr φI<Xx=XifX=IMifX<IXX1=X1
35 14 34 eqtrd φI<Xx=Xifx=IMifx<Ixx1=X1
36 6 adantr φI<XX1M
37 36 elfzelzd φI<XX
38 1zzd φI<X1
39 37 38 zsubcld φI<XX1
40 7 35 36 39 fvmptd φI<XAX=X1
41 1red φ1
42 26 41 resubcld φX1
43 elfzle2 X1MXM
44 6 43 syl φXM
45 6 elfzelzd φX
46 1 nnzd φM
47 zlem1lt XMXMX1<M
48 45 46 47 syl2anc φXMX1<M
49 44 48 mpbid φX1<M
50 42 49 ltned φX1M
51 50 adantr φI<XX1M
52 40 51 eqnetrd φI<XAXM
53 52 neneqd φI<X¬AX=M
54 2 nnzd φI
55 zltlem1 IXI<XIX1
56 55 biimpd IXI<XIX1
57 54 45 56 syl2anc φI<XIX1
58 57 imp φI<XIX1
59 58 40 breqtrrd φI<XIAX
60 39 zred φI<XX1
61 40 60 eqeltrd φI<XAX
62 16 61 lenltd φI<XIAX¬AX<I
63 59 62 mpbid φI<X¬AX<I
64 40 53 63 3jca φI<XAX=X1¬AX=M¬AX<I