Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt7.1 | |
|
metakunt7.2 | |
||
metakunt7.3 | |
||
metakunt7.4 | |
||
metakunt7.5 | |
||
metakunt7.6 | |
||
Assertion | metakunt7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt7.1 | |
|
2 | metakunt7.2 | |
|
3 | metakunt7.3 | |
|
4 | metakunt7.4 | |
|
5 | metakunt7.5 | |
|
6 | metakunt7.6 | |
|
7 | 4 | a1i | |
8 | eqeq1 | |
|
9 | breq1 | |
|
10 | id | |
|
11 | oveq1 | |
|
12 | 9 10 11 | ifbieq12d | |
13 | 8 12 | ifbieq2d | |
14 | 13 | adantl | |
15 | 2 | nnred | |
16 | 15 | adantr | |
17 | simpr | |
|
18 | 16 17 | ltned | |
19 | 18 | necomd | |
20 | df-ne | |
|
21 | 19 20 | sylib | |
22 | iffalse | |
|
23 | 21 22 | syl | |
24 | elfznn | |
|
25 | 6 24 | syl | |
26 | 25 | nnred | |
27 | 26 | adantr | |
28 | 16 27 17 | ltled | |
29 | 16 27 | lenltd | |
30 | 28 29 | mpbid | |
31 | iffalse | |
|
32 | 30 31 | syl | |
33 | 23 32 | eqtrd | |
34 | 33 | adantr | |
35 | 14 34 | eqtrd | |
36 | 6 | adantr | |
37 | 36 | elfzelzd | |
38 | 1zzd | |
|
39 | 37 38 | zsubcld | |
40 | 7 35 36 39 | fvmptd | |
41 | 1red | |
|
42 | 26 41 | resubcld | |
43 | elfzle2 | |
|
44 | 6 43 | syl | |
45 | 6 | elfzelzd | |
46 | 1 | nnzd | |
47 | zlem1lt | |
|
48 | 45 46 47 | syl2anc | |
49 | 44 48 | mpbid | |
50 | 42 49 | ltned | |
51 | 50 | adantr | |
52 | 40 51 | eqnetrd | |
53 | 52 | neneqd | |
54 | 2 | nnzd | |
55 | zltlem1 | |
|
56 | 55 | biimpd | |
57 | 54 45 56 | syl2anc | |
58 | 57 | imp | |
59 | 58 40 | breqtrrd | |
60 | 39 | zred | |
61 | 40 60 | eqeltrd | |
62 | 16 61 | lenltd | |
63 | 59 62 | mpbid | |
64 | 40 53 63 | 3jca | |