Metamath Proof Explorer


Theorem mgmhmeql

Description: The equalizer of two magma homomorphisms is a submagma. (Contributed by AV, 27-Feb-2020)

Ref Expression
Assertion mgmhmeql FSMgmHomTGSMgmHomTdomFGSubMgmS

Proof

Step Hyp Ref Expression
1 eqid BaseS=BaseS
2 eqid BaseT=BaseT
3 1 2 mgmhmf FSMgmHomTF:BaseSBaseT
4 3 adantr FSMgmHomTGSMgmHomTF:BaseSBaseT
5 4 ffnd FSMgmHomTGSMgmHomTFFnBaseS
6 1 2 mgmhmf GSMgmHomTG:BaseSBaseT
7 6 adantl FSMgmHomTGSMgmHomTG:BaseSBaseT
8 7 ffnd FSMgmHomTGSMgmHomTGFnBaseS
9 fndmin FFnBaseSGFnBaseSdomFG=zBaseS|Fz=Gz
10 5 8 9 syl2anc FSMgmHomTGSMgmHomTdomFG=zBaseS|Fz=Gz
11 ssrab2 zBaseS|Fz=GzBaseS
12 11 a1i FSMgmHomTGSMgmHomTzBaseS|Fz=GzBaseS
13 mgmhmrcl FSMgmHomTSMgmTMgm
14 13 simpld FSMgmHomTSMgm
15 14 adantr FSMgmHomTGSMgmHomTSMgm
16 15 ad2antrr FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GySMgm
17 simplrl FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyxBaseS
18 simprl FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyyBaseS
19 eqid +S=+S
20 1 19 mgmcl SMgmxBaseSyBaseSx+SyBaseS
21 16 17 18 20 syl3anc FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=Gyx+SyBaseS
22 simplrr FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyFx=Gx
23 simprr FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyFy=Gy
24 22 23 oveq12d FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyFx+TFy=Gx+TGy
25 simplll FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyFSMgmHomT
26 eqid +T=+T
27 1 19 26 mgmhmlin FSMgmHomTxBaseSyBaseSFx+Sy=Fx+TFy
28 25 17 18 27 syl3anc FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyFx+Sy=Fx+TFy
29 simpllr FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyGSMgmHomT
30 1 19 26 mgmhmlin GSMgmHomTxBaseSyBaseSGx+Sy=Gx+TGy
31 29 17 18 30 syl3anc FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyGx+Sy=Gx+TGy
32 24 28 31 3eqtr4d FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=GyFx+Sy=Gx+Sy
33 fveq2 z=x+SyFz=Fx+Sy
34 fveq2 z=x+SyGz=Gx+Sy
35 33 34 eqeq12d z=x+SyFz=GzFx+Sy=Gx+Sy
36 35 elrab x+SyzBaseS|Fz=Gzx+SyBaseSFx+Sy=Gx+Sy
37 21 32 36 sylanbrc FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=Gyx+SyzBaseS|Fz=Gz
38 37 expr FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=Gyx+SyzBaseS|Fz=Gz
39 38 ralrimiva FSMgmHomTGSMgmHomTxBaseSFx=GxyBaseSFy=Gyx+SyzBaseS|Fz=Gz
40 fveq2 z=yFz=Fy
41 fveq2 z=yGz=Gy
42 40 41 eqeq12d z=yFz=GzFy=Gy
43 42 ralrab yzBaseS|Fz=Gzx+SyzBaseS|Fz=GzyBaseSFy=Gyx+SyzBaseS|Fz=Gz
44 39 43 sylibr FSMgmHomTGSMgmHomTxBaseSFx=GxyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
45 44 expr FSMgmHomTGSMgmHomTxBaseSFx=GxyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
46 45 ralrimiva FSMgmHomTGSMgmHomTxBaseSFx=GxyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
47 fveq2 z=xFz=Fx
48 fveq2 z=xGz=Gx
49 47 48 eqeq12d z=xFz=GzFx=Gx
50 49 ralrab xzBaseS|Fz=GzyzBaseS|Fz=Gzx+SyzBaseS|Fz=GzxBaseSFx=GxyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
51 46 50 sylibr FSMgmHomTGSMgmHomTxzBaseS|Fz=GzyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
52 1 19 issubmgm SMgmzBaseS|Fz=GzSubMgmSzBaseS|Fz=GzBaseSxzBaseS|Fz=GzyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
53 15 52 syl FSMgmHomTGSMgmHomTzBaseS|Fz=GzSubMgmSzBaseS|Fz=GzBaseSxzBaseS|Fz=GzyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
54 12 51 53 mpbir2and FSMgmHomTGSMgmHomTzBaseS|Fz=GzSubMgmS
55 10 54 eqeltrd FSMgmHomTGSMgmHomTdomFGSubMgmS