| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
mgmhmf |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
ffnd |
|
| 6 |
1 2
|
mgmhmf |
|
| 7 |
6
|
adantl |
|
| 8 |
7
|
ffnd |
|
| 9 |
|
fndmin |
|
| 10 |
5 8 9
|
syl2anc |
|
| 11 |
|
ssrab2 |
|
| 12 |
11
|
a1i |
|
| 13 |
|
mgmhmrcl |
|
| 14 |
13
|
simpld |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
simplrl |
|
| 18 |
|
simprl |
|
| 19 |
|
eqid |
|
| 20 |
1 19
|
mgmcl |
|
| 21 |
16 17 18 20
|
syl3anc |
|
| 22 |
|
simplrr |
|
| 23 |
|
simprr |
|
| 24 |
22 23
|
oveq12d |
|
| 25 |
|
simplll |
|
| 26 |
|
eqid |
|
| 27 |
1 19 26
|
mgmhmlin |
|
| 28 |
25 17 18 27
|
syl3anc |
|
| 29 |
|
simpllr |
|
| 30 |
1 19 26
|
mgmhmlin |
|
| 31 |
29 17 18 30
|
syl3anc |
|
| 32 |
24 28 31
|
3eqtr4d |
|
| 33 |
|
fveq2 |
|
| 34 |
|
fveq2 |
|
| 35 |
33 34
|
eqeq12d |
|
| 36 |
35
|
elrab |
|
| 37 |
21 32 36
|
sylanbrc |
|
| 38 |
37
|
expr |
|
| 39 |
38
|
ralrimiva |
|
| 40 |
|
fveq2 |
|
| 41 |
|
fveq2 |
|
| 42 |
40 41
|
eqeq12d |
|
| 43 |
42
|
ralrab |
|
| 44 |
39 43
|
sylibr |
|
| 45 |
44
|
expr |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
fveq2 |
|
| 48 |
|
fveq2 |
|
| 49 |
47 48
|
eqeq12d |
|
| 50 |
49
|
ralrab |
|
| 51 |
46 50
|
sylibr |
|
| 52 |
1 19
|
issubmgm |
|
| 53 |
15 52
|
syl |
|
| 54 |
12 51 53
|
mpbir2and |
|
| 55 |
10 54
|
eqeltrd |
|