Description: The equalizer of two magma homomorphisms is a submagma. (Contributed by AV, 27-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | mgmhmeql | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | mgmhmf | |
4 | 3 | adantr | |
5 | 4 | ffnd | |
6 | 1 2 | mgmhmf | |
7 | 6 | adantl | |
8 | 7 | ffnd | |
9 | fndmin | |
|
10 | 5 8 9 | syl2anc | |
11 | ssrab2 | |
|
12 | 11 | a1i | |
13 | mgmhmrcl | |
|
14 | 13 | simpld | |
15 | 14 | adantr | |
16 | 15 | ad2antrr | |
17 | simplrl | |
|
18 | simprl | |
|
19 | eqid | |
|
20 | 1 19 | mgmcl | |
21 | 16 17 18 20 | syl3anc | |
22 | simplrr | |
|
23 | simprr | |
|
24 | 22 23 | oveq12d | |
25 | simplll | |
|
26 | eqid | |
|
27 | 1 19 26 | mgmhmlin | |
28 | 25 17 18 27 | syl3anc | |
29 | simpllr | |
|
30 | 1 19 26 | mgmhmlin | |
31 | 29 17 18 30 | syl3anc | |
32 | 24 28 31 | 3eqtr4d | |
33 | fveq2 | |
|
34 | fveq2 | |
|
35 | 33 34 | eqeq12d | |
36 | 35 | elrab | |
37 | 21 32 36 | sylanbrc | |
38 | 37 | expr | |
39 | 38 | ralrimiva | |
40 | fveq2 | |
|
41 | fveq2 | |
|
42 | 40 41 | eqeq12d | |
43 | 42 | ralrab | |
44 | 39 43 | sylibr | |
45 | 44 | expr | |
46 | 45 | ralrimiva | |
47 | fveq2 | |
|
48 | fveq2 | |
|
49 | 47 48 | eqeq12d | |
50 | 49 | ralrab | |
51 | 46 50 | sylibr | |
52 | 1 19 | issubmgm | |
53 | 15 52 | syl | |
54 | 12 51 53 | mpbir2and | |
55 | 10 54 | eqeltrd | |