Metamath Proof Explorer


Theorem mhpsclcl

Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl . In other contexts, there may be an exception for the zero polynomial, but under df-mhp the zero polynomial can be any degree (see mhp0cl ) so there is no exception. (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses mhpsclcl.h H=ImHomPR
mhpsclcl.p P=ImPolyR
mhpsclcl.a A=algScP
mhpsclcl.k K=BaseR
mhpsclcl.i φIV
mhpsclcl.r φRRing
mhpsclcl.c φCK
Assertion mhpsclcl φACH0

Proof

Step Hyp Ref Expression
1 mhpsclcl.h H=ImHomPR
2 mhpsclcl.p P=ImPolyR
3 mhpsclcl.a A=algScP
4 mhpsclcl.k K=BaseR
5 mhpsclcl.i φIV
6 mhpsclcl.r φRRing
7 mhpsclcl.c φCK
8 eqid h0I|h-1Fin=h0I|h-1Fin
9 eqid 0R=0R
10 5 adantr φdh0I|h-1FinIV
11 6 adantr φdh0I|h-1FinRRing
12 7 adantr φdh0I|h-1FinCK
13 2 8 9 4 3 10 11 12 mplascl φdh0I|h-1FinAC=yh0I|h-1Finify=I×0C0R
14 eqeq1 y=dy=I×0d=I×0
15 14 ifbid y=dify=I×0C0R=ifd=I×0C0R
16 15 adantl φdh0I|h-1Finy=dify=I×0C0R=ifd=I×0C0R
17 simpr φdh0I|h-1Findh0I|h-1Fin
18 fvexd φ0RV
19 7 18 ifexd φifd=I×0C0RV
20 19 adantr φdh0I|h-1Finifd=I×0C0RV
21 13 16 17 20 fvmptd φdh0I|h-1FinACd=ifd=I×0C0R
22 21 neeq1d φdh0I|h-1FinACd0Rifd=I×0C0R0R
23 iffalse ¬d=I×0ifd=I×0C0R=0R
24 23 necon1ai ifd=I×0C0R0Rd=I×0
25 fconstmpt I×0=kI0
26 25 oveq2i fld𝑠0I×0=fld𝑠0kI0
27 nn0subm 0SubMndfld
28 eqid fld𝑠0=fld𝑠0
29 28 submmnd 0SubMndfldfld𝑠0Mnd
30 27 29 ax-mp fld𝑠0Mnd
31 cnfld0 0=0fld
32 28 31 subm0 0SubMndfld0=0fld𝑠0
33 27 32 ax-mp 0=0fld𝑠0
34 33 gsumz fld𝑠0MndIVfld𝑠0kI0=0
35 30 10 34 sylancr φdh0I|h-1Finfld𝑠0kI0=0
36 26 35 eqtrid φdh0I|h-1Finfld𝑠0I×0=0
37 oveq2 d=I×0fld𝑠0d=fld𝑠0I×0
38 37 eqeq1d d=I×0fld𝑠0d=0fld𝑠0I×0=0
39 36 38 syl5ibrcom φdh0I|h-1Find=I×0fld𝑠0d=0
40 24 39 syl5 φdh0I|h-1Finifd=I×0C0R0Rfld𝑠0d=0
41 22 40 sylbid φdh0I|h-1FinACd0Rfld𝑠0d=0
42 41 ralrimiva φdh0I|h-1FinACd0Rfld𝑠0d=0
43 eqid BaseP=BaseP
44 0nn0 00
45 44 a1i φ00
46 2 43 4 3 5 6 mplasclf φA:KBaseP
47 46 7 ffvelcdmd φACBaseP
48 1 2 43 9 8 5 6 45 47 ismhp3 φACH0dh0I|h-1FinACd0Rfld𝑠0d=0
49 42 48 mpbird φACH0