Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl . In other contexts, there may be an exception for the zero polynomial, but under df-mhp the zero polynomial can be any degree (see mhp0cl ) so there is no exception. (Contributed by SN, 25-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhpsclcl.h | |
|
mhpsclcl.p | |
||
mhpsclcl.a | |
||
mhpsclcl.k | |
||
mhpsclcl.i | |
||
mhpsclcl.r | |
||
mhpsclcl.c | |
||
Assertion | mhpsclcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpsclcl.h | |
|
2 | mhpsclcl.p | |
|
3 | mhpsclcl.a | |
|
4 | mhpsclcl.k | |
|
5 | mhpsclcl.i | |
|
6 | mhpsclcl.r | |
|
7 | mhpsclcl.c | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 5 | adantr | |
11 | 6 | adantr | |
12 | 7 | adantr | |
13 | 2 8 9 4 3 10 11 12 | mplascl | |
14 | eqeq1 | |
|
15 | 14 | ifbid | |
16 | 15 | adantl | |
17 | simpr | |
|
18 | fvexd | |
|
19 | 7 18 | ifexd | |
20 | 19 | adantr | |
21 | 13 16 17 20 | fvmptd | |
22 | 21 | neeq1d | |
23 | iffalse | |
|
24 | 23 | necon1ai | |
25 | fconstmpt | |
|
26 | 25 | oveq2i | |
27 | nn0subm | |
|
28 | eqid | |
|
29 | 28 | submmnd | |
30 | 27 29 | ax-mp | |
31 | cnfld0 | |
|
32 | 28 31 | subm0 | |
33 | 27 32 | ax-mp | |
34 | 33 | gsumz | |
35 | 30 10 34 | sylancr | |
36 | 26 35 | eqtrid | |
37 | oveq2 | |
|
38 | 37 | eqeq1d | |
39 | 36 38 | syl5ibrcom | |
40 | 24 39 | syl5 | |
41 | 22 40 | sylbid | |
42 | 41 | ralrimiva | |
43 | eqid | |
|
44 | 0nn0 | |
|
45 | 44 | a1i | |
46 | 2 43 4 3 5 6 | mplasclf | |
47 | 46 7 | ffvelcdmd | |
48 | 1 2 43 9 8 5 6 45 47 | ismhp3 | |
49 | 42 48 | mpbird | |