| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhpsclcl.h |  | 
						
							| 2 |  | mhpsclcl.p |  | 
						
							| 3 |  | mhpsclcl.a |  | 
						
							| 4 |  | mhpsclcl.k |  | 
						
							| 5 |  | mhpsclcl.i |  | 
						
							| 6 |  | mhpsclcl.r |  | 
						
							| 7 |  | mhpsclcl.c |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 5 | adantr |  | 
						
							| 11 | 6 | adantr |  | 
						
							| 12 | 7 | adantr |  | 
						
							| 13 | 2 8 9 4 3 10 11 12 | mplascl |  | 
						
							| 14 |  | eqeq1 |  | 
						
							| 15 | 14 | ifbid |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 |  | fvexd |  | 
						
							| 19 | 7 18 | ifexd |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 13 16 17 20 | fvmptd |  | 
						
							| 22 | 21 | neeq1d |  | 
						
							| 23 |  | iffalse |  | 
						
							| 24 | 23 | necon1ai |  | 
						
							| 25 |  | fconstmpt |  | 
						
							| 26 | 25 | oveq2i |  | 
						
							| 27 |  | nn0subm |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 28 | submmnd |  | 
						
							| 30 | 27 29 | ax-mp |  | 
						
							| 31 |  | cnfld0 |  | 
						
							| 32 | 28 31 | subm0 |  | 
						
							| 33 | 27 32 | ax-mp |  | 
						
							| 34 | 33 | gsumz |  | 
						
							| 35 | 30 10 34 | sylancr |  | 
						
							| 36 | 26 35 | eqtrid |  | 
						
							| 37 |  | oveq2 |  | 
						
							| 38 | 37 | eqeq1d |  | 
						
							| 39 | 36 38 | syl5ibrcom |  | 
						
							| 40 | 24 39 | syl5 |  | 
						
							| 41 | 22 40 | sylbid |  | 
						
							| 42 | 41 | ralrimiva |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 |  | 0nn0 |  | 
						
							| 45 | 44 | a1i |  | 
						
							| 46 | 2 43 4 3 5 6 | mplasclf |  | 
						
							| 47 | 46 7 | ffvelcdmd |  | 
						
							| 48 | 1 2 43 9 8 45 47 | ismhp3 |  | 
						
							| 49 | 42 48 | mpbird |  |