Description: A minimal polynomial is monic. (Contributed by Thierry Arnoux, 2-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | irngnminplynz.z | |
|
irngnminplynz.e | |
||
irngnminplynz.f | |
||
irngnminplynz.m | No typesetting found for |- M = ( E minPoly F ) with typecode |- | ||
irngnminplynz.a | |
||
minplym1p.1 | |
||
Assertion | minplym1p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irngnminplynz.z | |
|
2 | irngnminplynz.e | |
|
3 | irngnminplynz.f | |
|
4 | irngnminplynz.m | Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |- | |
5 | irngnminplynz.a | |
|
6 | minplym1p.1 | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 2 | fldcrngd | |
13 | sdrgsubrg | |
|
14 | 3 13 | syl | |
15 | 7 10 9 11 12 14 | irngssv | |
16 | 15 5 | sseldd | |
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 7 8 9 2 3 16 11 17 18 19 4 | minplyval | |
21 | 10 | sdrgdrng | |
22 | 3 21 | syl | |
23 | 7 8 9 12 14 16 11 17 | ply1annidl | |
24 | 20 | sneqd | |
25 | 24 | fveq2d | |
26 | 7 8 9 2 3 16 11 17 18 19 | ply1annig1p | |
27 | 25 26 | eqtr4d | |
28 | 22 | drngringd | |
29 | 8 | ply1ring | |
30 | 28 29 | syl | |
31 | 7 8 9 2 3 16 11 17 18 19 4 | minplycl | |
32 | 1 2 3 4 5 | irngnminplynz | |
33 | eqid | |
|
34 | eqid | |
|
35 | 33 10 8 34 14 1 | ressply10g | |
36 | 32 35 | neeqtrd | |
37 | eqid | |
|
38 | 34 37 18 | pidlnz | |
39 | 30 31 36 38 | syl3anc | |
40 | 27 39 | eqnetrrd | |
41 | eqid | |
|
42 | eqid | |
|
43 | 8 19 37 41 42 6 | ig1pval3 | |
44 | 22 23 40 43 | syl3anc | |
45 | 44 | simp2d | |
46 | 20 45 | eqeltrd | |