Metamath Proof Explorer


Theorem minplym1p

Description: A minimal polynomial is monic. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses irngnminplynz.z Z=0Poly1E
irngnminplynz.e φEField
irngnminplynz.f φFSubDRingE
irngnminplynz.m No typesetting found for |- M = ( E minPoly F ) with typecode |-
irngnminplynz.a φAEIntgRingF
minplym1p.1 U=Monic1pE𝑠F
Assertion minplym1p φMAU

Proof

Step Hyp Ref Expression
1 irngnminplynz.z Z=0Poly1E
2 irngnminplynz.e φEField
3 irngnminplynz.f φFSubDRingE
4 irngnminplynz.m Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
5 irngnminplynz.a φAEIntgRingF
6 minplym1p.1 U=Monic1pE𝑠F
7 eqid EevalSub1F=EevalSub1F
8 eqid Poly1E𝑠F=Poly1E𝑠F
9 eqid BaseE=BaseE
10 eqid E𝑠F=E𝑠F
11 eqid 0E=0E
12 2 fldcrngd φECRing
13 sdrgsubrg FSubDRingEFSubRingE
14 3 13 syl φFSubRingE
15 7 10 9 11 12 14 irngssv φEIntgRingFBaseE
16 15 5 sseldd φABaseE
17 eqid qdomEevalSub1F|EevalSub1FqA=0E=qdomEevalSub1F|EevalSub1FqA=0E
18 eqid RSpanPoly1E𝑠F=RSpanPoly1E𝑠F
19 eqid idlGen1pE𝑠F=idlGen1pE𝑠F
20 7 8 9 2 3 16 11 17 18 19 4 minplyval φMA=idlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E
21 10 sdrgdrng FSubDRingEE𝑠FDivRing
22 3 21 syl φE𝑠FDivRing
23 7 8 9 12 14 16 11 17 ply1annidl φqdomEevalSub1F|EevalSub1FqA=0ELIdealPoly1E𝑠F
24 20 sneqd φMA=idlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E
25 24 fveq2d φRSpanPoly1E𝑠FMA=RSpanPoly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E
26 7 8 9 2 3 16 11 17 18 19 ply1annig1p φqdomEevalSub1F|EevalSub1FqA=0E=RSpanPoly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E
27 25 26 eqtr4d φRSpanPoly1E𝑠FMA=qdomEevalSub1F|EevalSub1FqA=0E
28 22 drngringd φE𝑠FRing
29 8 ply1ring E𝑠FRingPoly1E𝑠FRing
30 28 29 syl φPoly1E𝑠FRing
31 7 8 9 2 3 16 11 17 18 19 4 minplycl φMABasePoly1E𝑠F
32 1 2 3 4 5 irngnminplynz φMAZ
33 eqid Poly1E=Poly1E
34 eqid BasePoly1E𝑠F=BasePoly1E𝑠F
35 33 10 8 34 14 1 ressply10g φZ=0Poly1E𝑠F
36 32 35 neeqtrd φMA0Poly1E𝑠F
37 eqid 0Poly1E𝑠F=0Poly1E𝑠F
38 34 37 18 pidlnz Poly1E𝑠FRingMABasePoly1E𝑠FMA0Poly1E𝑠FRSpanPoly1E𝑠FMA0Poly1E𝑠F
39 30 31 36 38 syl3anc φRSpanPoly1E𝑠FMA0Poly1E𝑠F
40 27 39 eqnetrrd φqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F
41 eqid LIdealPoly1E𝑠F=LIdealPoly1E𝑠F
42 eqid deg1E𝑠F=deg1E𝑠F
43 8 19 37 41 42 6 ig1pval3 E𝑠FDivRingqdomEevalSub1F|EevalSub1FqA=0ELIdealPoly1E𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EqdomEevalSub1F|EevalSub1FqA=0EidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EUdeg1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E=supdeg1E𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F<
44 22 23 40 43 syl3anc φidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EqdomEevalSub1F|EevalSub1FqA=0EidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EUdeg1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E=supdeg1E𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F<
45 44 simp2d φidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EU
46 20 45 eqeltrd φMAU