Metamath Proof Explorer


Theorem minvecolem4b

Description: Lemma for minveco . The convergent point of the cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
minveco.s S=supR<
minveco.f φF:Y
minveco.1 φnADFn2S2+1n
Assertion minvecolem4b φtJFX

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 minveco.s S=supR<
12 minveco.f φF:Y
13 minveco.1 φnADFn2S2+1n
14 phnv UCPreHilOLDUNrmCVec
15 5 14 syl φUNrmCVec
16 elin WSubSpUCBanWSubSpUWCBan
17 6 16 sylib φWSubSpUWCBan
18 17 simpld φWSubSpU
19 eqid SubSpU=SubSpU
20 1 4 19 sspba UNrmCVecWSubSpUYX
21 15 18 20 syl2anc φYX
22 1 8 imsxmet UNrmCVecD∞MetX
23 15 22 syl φD∞MetX
24 9 methaus D∞MetXJHaus
25 23 24 syl φJHaus
26 lmfun JHausFuntJ
27 25 26 syl φFuntJ
28 1 2 3 4 5 6 7 8 9 10 11 12 13 minvecolem4a φFtMetOpenDY×YtMetOpenDY×YF
29 eqid J𝑡Y=J𝑡Y
30 nnuz =1
31 4 fvexi YV
32 31 a1i φYV
33 9 mopntop D∞MetXJTop
34 23 33 syl φJTop
35 xmetres2 D∞MetXYXDY×Y∞MetY
36 23 21 35 syl2anc φDY×Y∞MetY
37 eqid MetOpenDY×Y=MetOpenDY×Y
38 37 mopntopon DY×Y∞MetYMetOpenDY×YTopOnY
39 36 38 syl φMetOpenDY×YTopOnY
40 lmcl MetOpenDY×YTopOnYFtMetOpenDY×YtMetOpenDY×YFtMetOpenDY×YFY
41 39 28 40 syl2anc φtMetOpenDY×YFY
42 1zzd φ1
43 29 30 32 34 41 42 12 lmss φFtJtMetOpenDY×YFFtJ𝑡YtMetOpenDY×YF
44 eqid DY×Y=DY×Y
45 44 9 37 metrest D∞MetXYXJ𝑡Y=MetOpenDY×Y
46 23 21 45 syl2anc φJ𝑡Y=MetOpenDY×Y
47 46 fveq2d φtJ𝑡Y=tMetOpenDY×Y
48 47 breqd φFtJ𝑡YtMetOpenDY×YFFtMetOpenDY×YtMetOpenDY×YF
49 43 48 bitrd φFtJtMetOpenDY×YFFtMetOpenDY×YtMetOpenDY×YF
50 28 49 mpbird φFtJtMetOpenDY×YF
51 funbrfv FuntJFtJtMetOpenDY×YFtJF=tMetOpenDY×YF
52 27 50 51 sylc φtJF=tMetOpenDY×YF
53 52 41 eqeltrd φtJFY
54 21 53 sseldd φtJFX