Description: Lemma for minveco . The convergent point of the cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | minveco.x | |
|
minveco.m | |
||
minveco.n | |
||
minveco.y | |
||
minveco.u | |
||
minveco.w | |
||
minveco.a | |
||
minveco.d | |
||
minveco.j | |
||
minveco.r | |
||
minveco.s | |
||
minveco.f | |
||
minveco.1 | |
||
Assertion | minvecolem4b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.x | |
|
2 | minveco.m | |
|
3 | minveco.n | |
|
4 | minveco.y | |
|
5 | minveco.u | |
|
6 | minveco.w | |
|
7 | minveco.a | |
|
8 | minveco.d | |
|
9 | minveco.j | |
|
10 | minveco.r | |
|
11 | minveco.s | |
|
12 | minveco.f | |
|
13 | minveco.1 | |
|
14 | phnv | |
|
15 | 5 14 | syl | |
16 | elin | |
|
17 | 6 16 | sylib | |
18 | 17 | simpld | |
19 | eqid | |
|
20 | 1 4 19 | sspba | |
21 | 15 18 20 | syl2anc | |
22 | 1 8 | imsxmet | |
23 | 15 22 | syl | |
24 | 9 | methaus | |
25 | 23 24 | syl | |
26 | lmfun | |
|
27 | 25 26 | syl | |
28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4a | |
29 | eqid | |
|
30 | nnuz | |
|
31 | 4 | fvexi | |
32 | 31 | a1i | |
33 | 9 | mopntop | |
34 | 23 33 | syl | |
35 | xmetres2 | |
|
36 | 23 21 35 | syl2anc | |
37 | eqid | |
|
38 | 37 | mopntopon | |
39 | 36 38 | syl | |
40 | lmcl | |
|
41 | 39 28 40 | syl2anc | |
42 | 1zzd | |
|
43 | 29 30 32 34 41 42 12 | lmss | |
44 | eqid | |
|
45 | 44 9 37 | metrest | |
46 | 23 21 45 | syl2anc | |
47 | 46 | fveq2d | |
48 | 47 | breqd | |
49 | 43 48 | bitrd | |
50 | 28 49 | mpbird | |
51 | funbrfv | |
|
52 | 27 50 51 | sylc | |
53 | 52 41 | eqeltrd | |
54 | 21 53 | sseldd | |